Solve the following equations:
(i) $\sin \mathrm{x}+\cos \mathrm{x}=\sqrt{2}$
(ii) $\sqrt{3} \cos x+\sin x=1$
(iii) $\sin x+\cos x=1$
(iv) $\operatorname{cosec} x=1+\cot x$
(i) Given:
$\sin x+\cos x=\sqrt{2} \ldots$.(i)
The equation is of the form $a \sin x+b \cos x=c$, where $a=1, b=1$ and $c=\sqrt{2}$.
Let: $a=r \sin \alpha$ and $b=r \cos \alpha$
Now, $r=\sqrt{a^{2}+b^{2}}=\sqrt{1^{2}+1^{2}}=\sqrt{2}$ and $\tan \alpha=1 \Rightarrow \alpha=\frac{\pi}{4}$
On putting $a=1=r \sin \alpha$ and $b=1=r \cos \alpha$ in equation (i), we get:
$r \sin \alpha \sin x+r \cos \alpha \cos x=\sqrt{2}$
$\Rightarrow r \cos (x-\alpha)=\sqrt{2}$
$\Rightarrow \sqrt{2} \cos \left(x-\frac{\pi}{4}\right)=\sqrt{2}$
$\Rightarrow \cos \left(x-\frac{\pi}{4}\right)=1$
$\Rightarrow \cos \left(x-\frac{\pi}{4}\right)=\cos 0$
$\Rightarrow x-\frac{\pi}{4}=n \pi \pm 0, n \in \mathrm{Z}$
$\Rightarrow \mathrm{x}=\mathrm{n} \pi+\frac{\pi}{4}, n \in \mathrm{Z}$
$\Rightarrow x=(8 n+1) \frac{\pi}{4}, n \in Z$
(ii) Given: $\sqrt{3} \cos x+\sin x=1 \ldots$ (ii)
The equation is of the form of $a \cos x+b \sin x=c$, where $a=\sqrt{3}, b=1$ and $c=1$.
Let: $a=r \cos \alpha$ and $b=r \sin \alpha$
Now, $r=\sqrt{a^{2}+b^{2}}=\sqrt{(\sqrt{3})^{2}+1^{2}}=2$ and $\tan \alpha=\frac{b}{a}=\frac{1}{\sqrt{3}} \Rightarrow \alpha=\frac{\pi}{6}$
On putting $a=\sqrt{3}=r \cos \alpha$ and $b=1=r \sin \alpha$ in equation (ii), we get:
$r \cos \alpha \cos x+r \sin \alpha \sin x=1$
$\Rightarrow r \cos (x-\alpha)=1$
$\Rightarrow 2 \cos (x-\alpha)=1$
$\Rightarrow \cos \left(x-\frac{\pi}{6}\right)=\frac{1}{2}$
$\Rightarrow \cos \left(x-\frac{\pi}{6}\right)=\cos \frac{\pi}{3}$
$\Rightarrow x-\frac{\pi}{6}=2 n \pi \pm \frac{\pi}{3}, \mathrm{n} \in \mathrm{Z}$
On taking positive sign, we get:
$x-\frac{\pi}{6}=2 n \pi+\frac{\pi}{3}$
$\Rightarrow \mathrm{x}=2 \mathrm{n} \pi+\frac{\pi}{3}+\frac{\pi}{6}$
$\Rightarrow \mathrm{x}=2 \mathrm{n} \pi+\frac{\pi}{2}, \mathrm{n} \in \mathrm{Z}$
$\Rightarrow x=(4 \mathrm{n}+1) \frac{\pi}{2}, \mathrm{n} \in \mathrm{Z}$
Now, on taking negative sign of the equation, we get:
$x-\frac{\pi}{6}=2 m \pi-\frac{\pi}{3}, \mathrm{~m} \in \mathrm{Z}$
$\Rightarrow \mathrm{x}=2 \mathrm{~m} \pi-\frac{\pi}{3}+\frac{\pi}{6}, \mathrm{~m} \in \mathrm{Z}$
$\Rightarrow \mathrm{x}=2 \mathrm{~m} \pi-\frac{\pi}{6}=(12 \mathrm{~m}-1) \frac{\pi}{6}, \mathrm{~m} \in \mathrm{Z}$
(iii) Given: $\sin x+\cos x=1 \quad$...(iii)
The equation is of the form $a \sin \theta+b \cos \theta=c$, where $a=1, b=1$ and $c=1$.
Let: $a=r \sin \alpha$ and $b=r \cos \alpha$
Now, $r=\sqrt{a^{2}+b^{2}}=\sqrt{1^{2}+1^{2}}=\sqrt{2}$ and $\tan \alpha=\frac{b}{a}=1 \Rightarrow \alpha=\frac{\pi}{4}$
On putting $a=1=r \sin \alpha$ and $b=1=r \cos \alpha$ in equation (iii), we get:
$r \sin \alpha \sin x+r \cos \alpha \cos x=1$
$\Rightarrow r \cos (x-\alpha)=1$
$\Rightarrow \sqrt{2} \cos \left(x-\frac{\pi}{4}\right)=1$
$\Rightarrow \cos \left(x-\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}$
$\Rightarrow \cos \left(x-\frac{\pi}{4}\right)=\cos \frac{\pi}{4}$
$\Rightarrow x-\frac{\pi}{4}=2 n \pi \pm \frac{\pi}{4}, n \in Z$
On taking positive sign, we get:
$x-\frac{\pi}{4}=2 n \pi+\frac{\pi}{4}$
$\Rightarrow \mathrm{x}=2 \mathrm{n} \pi+\frac{\pi}{4}+\frac{\pi}{4}$
$\Rightarrow \mathrm{x}=2 \mathrm{n} \pi+\frac{\pi}{2}, n \in Z$
On taking negative sign, we get:
$x-\frac{\pi}{4}=2 m \pi-\frac{\pi}{4}$
$\Rightarrow \mathrm{x}=2 m \pi, m \in \mathrm{Z}$
(iv) Given: $\operatorname{cosec} x=1+\cot x$
$\Rightarrow \frac{1}{\sin x}=1+\frac{\cos x}{\sin x}$
$\Rightarrow \sin x+\cos x=1$ .....(iv)
The equation is of the form $a \sin x+b \cos x=c$, where $a=1, b=1$ and $c=1$.
Let: $a=r \sin \alpha$ and $b=r \cos \alpha$
Now, $r=\sqrt{a^{2}+b^{2}}=\sqrt{1^{2}+1^{2}}=\sqrt{2}$ and $\tan \alpha=1 \Rightarrow \alpha=\frac{\pi}{4}$
On putting $a=1=r \sin \alpha$ and $b=1=r \cos \alpha$ in equation (iv), we get:
$r \sin \alpha \sin x+r \cos \alpha \cos x=1$
$\Rightarrow r \cos (x-\alpha)=1$
$\Rightarrow \sqrt{2} \cos \left(x-\frac{\pi}{4}\right)=1$
$\Rightarrow \cos \left(x-\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}$
$\Rightarrow \cos \left(x-\frac{\pi}{4}\right)=\cos \frac{\pi}{4}$
$\Rightarrow x-\frac{\pi}{4}=2 n \pi \pm \frac{\pi}{4}, \mathrm{n} \in \mathrm{Z}$
On taking positive sign, we get:
$x=2 n \pi+\frac{\pi}{2}, n \in Z$
On taking negative sign, we get:
$x=2 m \pi, m \in Z$
- JEE Main
- Exam Pattern
- Previous Year Papers
- PYQ Chapterwise
- Physics
- Kinematics 1D
- Kinemetics 2D
- Friction
- Work, Power, Energy
- Centre of Mass and Collision
- Rotational Dynamics
- Gravitation
- Calorimetry
- Elasticity
- Thermal Expansion
- Heat Transfer
- Kinetic Theory of Gases
- Thermodynamics
- Simple Harmonic Motion
- Wave on String
- Sound waves
- Fluid Mechanics
- Electrostatics
- Current Electricity
- Capacitor
- Magnetism and Matter
- Electromagnetic Induction
- Atomic Structure
- Dual Nature of Matter
- Nuclear Physics
- Radioactivity
- Semiconductors
- Communication System
- Error in Measurement & instruments
- Alternating Current
- Electromagnetic Waves
- Wave Optics
- X-Rays
- All Subjects
- Physics
- Motion in a Plane
- Law of Motion
- Work, Energy and Power
- Systems of Particles and Rotational Motion
- Gravitation
- Mechanical Properties of Solids
- Mechanical Properties of Fluids
- Thermal Properties of matter
- Thermodynamics
- Kinetic Theory
- Oscillations
- Waves
- Electric Charge and Fields
- Electrostatic Potential and Capacitance
- Current Electricity
- Thermoelectric Effects of Electric Current
- Heating Effects of Electric Current
- Moving Charges and Magnetism
- Magnetism and Matter
- Electromagnetic Induction
- Alternating Current
- Electromagnetic Wave
- Ray Optics and Optical Instruments
- Wave Optics
- Dual Nature of Radiation and Matter
- Atoms
- Nuclei
- Semiconductor Electronics: Materials, Devices and Simple Circuits.
- Chemical Effects of Electric Current,
All Study Material
- JEE Main
- Exam Pattern
- Previous Year Papers
- PYQ Chapterwise
- Physics
- Kinematics 1D
- Kinemetics 2D
- Friction
- Work, Power, Energy
- Centre of Mass and Collision
- Rotational Dynamics
- Gravitation
- Calorimetry
- Elasticity
- Thermal Expansion
- Heat Transfer
- Kinetic Theory of Gases
- Thermodynamics
- Simple Harmonic Motion
- Wave on String
- Sound waves
- Fluid Mechanics
- Electrostatics
- Current Electricity
- Capacitor
- Magnetism and Matter
- Electromagnetic Induction
- Atomic Structure
- Dual Nature of Matter
- Nuclear Physics
- Radioactivity
- Semiconductors
- Communication System
- Error in Measurement & instruments
- Alternating Current
- Electromagnetic Waves
- Wave Optics
- X-Rays
- All Subjects
- Physics
- Motion in a Plane
- Law of Motion
- Work, Energy and Power
- Systems of Particles and Rotational Motion
- Gravitation
- Mechanical Properties of Solids
- Mechanical Properties of Fluids
- Thermal Properties of matter
- Thermodynamics
- Kinetic Theory
- Oscillations
- Waves
- Electric Charge and Fields
- Electrostatic Potential and Capacitance
- Current Electricity
- Thermoelectric Effects of Electric Current
- Heating Effects of Electric Current
- Moving Charges and Magnetism
- Magnetism and Matter
- Electromagnetic Induction
- Alternating Current
- Electromagnetic Wave
- Ray Optics and Optical Instruments
- Wave Optics
- Dual Nature of Radiation and Matter
- Atoms
- Nuclei
- Semiconductor Electronics: Materials, Devices and Simple Circuits.
- Chemical Effects of Electric Current,