Solve the following equations for

Question:

The matrix $\left[\begin{array}{rrr}0 & 5 & -7 \\ -5 & 0 & 11 \\ 7 & -11 & 0\end{array}\right]$ is

(a) a skew-symmetric matrix

(b) a symmetric matrix

(c) a diagonal matrix

(d) an uppertriangular matrix

Solution:

(a) a skew-symmetric matrix

Here,

$A=\left[\begin{array}{ccc}0 & 5 & -7 \\ -5 & 0 & 11 \\ 7 & -11 & 0\end{array}\right]$

$\Rightarrow A^{T}=\left[\begin{array}{ccc}0 & -5 & 7 \\ 5 & 0 & -11 \\ -7 & 11 & 0\end{array}\right]$

$\Rightarrow A^{T}=-\left[\begin{array}{ccc}0 & 5 & -7 \\ -5 & 0 & 11 \\ 7 & -11 & 0\end{array}\right]$

$\Rightarrow A^{T}=-A$

Thus, $A$ is a skew-symmetric matrix.

Leave a comment

Close

Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now