Question:
$3 x+y=19$
$3 x-y=23$
Solution:
Given : $3 x+y=19$
$3 x-y=23$
Using Cramer's Rule, we get
$\mathrm{D}=\mid 3 \quad 1$
$3-1 \mid=-3-3=-6$
$\mathrm{D}_{1}=\mid 19 \quad 1$
$23-1 \mid=-19-23=-42$
$\mathrm{D}_{2}=\mid 3 \quad 19$
$3 \quad 23 \mid=(3 \times 23)-(3 \times 19)=3 \times 4=12$
Now,
$\mathrm{x}=\frac{\mathrm{D}_{1}}{\mathrm{D}}=\frac{-42}{-6}=7$
$\mathrm{y}=\frac{\mathrm{D}_{2}}{\mathrm{D}}=\frac{12}{-6}=-2$
$\therefore \mathrm{x}=7$ and $\mathrm{y}=-2$
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.