Determine if $f(x)=\left\{\begin{array}{cl}x^{2} \sin \frac{1}{x}, & x \neq 0 \\ 0, & x=0\end{array}\right.$ is a continuous function?
The given function $f$ is $f(x)= \begin{cases}x^{2} \sin \frac{1}{x}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0\end{cases}$
It is evident that $f$ is defined at all points of the real line.
Let $c$ be a real number.
Case I:
If $c \neq 0$, then $f(c)=c^{2} \sin \frac{1}{c}$
$\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c}\left(x^{2} \sin \frac{1}{x}\right)=\left(\lim _{x \rightarrow c} x^{2}\right)\left(\lim _{x \rightarrow c} \sin \frac{1}{x}\right)=c^{2} \sin \frac{1}{c}$
$\therefore \lim _{x \rightarrow c} f(x)=f(c)$
So, $f$ is continuous at all points $x \neq 0$
Case II:
If $c=0$, then $f(0)=0$
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}\left(x^{2} \sin \frac{1}{x}\right)=\lim _{x \rightarrow 0}\left(x^{2} \sin \frac{1}{x}\right)$
\text { It is known that }-1 \leq \sin \frac{1}{x} \leq 1, x \neq 0 \text {. }
$\Rightarrow-x^{2} \leq x^{2} \sin \frac{1}{x} \leq x^{2}$
$\Rightarrow \lim _{x \rightarrow 0}\left(-x^{2}\right) \leq \lim _{x \rightarrow 0}\left(x^{2} \sin \frac{1}{x}\right) \leq \lim _{x \rightarrow 0} x^{2}$
$\Rightarrow 0 \leq \lim _{x \rightarrow 0}\left(x^{2} \sin \frac{1}{x}\right) \leq 0$
$\Rightarrow \lim _{x \rightarrow 0}\left(x^{2} \sin \frac{1}{x}\right)=0$
$\Rightarrow \lim _{x \rightarrow 0^{-}} f(x)=0$
Similarly, $\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}\left(x^{2} \sin \frac{1}{x}\right)=\lim _{x \rightarrow 0}\left(x^{2} \sin \frac{1}{x}\right)=0$
$\therefore \lim _{x \rightarrow 0^{-}} f(x)=f(0)=\lim _{x \rightarrow 0^{+}} f(x)$
So, $f$ is continuous at $x=0$
From the above observations, it can be concluded that $f$ is continuous at every point of the real line.
Thus, $f$ is a continuous function.
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.