Question:
If $y=\sin ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)+\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)$, find $\frac{d y}{d x}$
Solution:
$-1<\frac{1-x^{2}}{1+x^{2}} \leq 1$ holds for all $x \in \mathbb{R}$.
So, $y=\sin ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)+\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)=\frac{\pi}{2}$, for all $x \in \mathbb{R}$
$\left(\because \sin ^{-1} \mathrm{~m}+\cos ^{-1} \mathrm{~m}=\frac{\pi}{2}, \mathrm{~m} \in[-1,1]\right)$
Hence, $\frac{d y}{d x}=0$, for all $x \in \mathbb{R}$.
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.