If $\frac{\pi}{2} \leq x \leq \frac{3 \pi}{2}$ and $y=\sin ^{-1}(\sin x)$, find $\frac{d y}{d x}$
For $\mathrm{x} \in\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)$
$y=\sin ^{-1}(\sin x)$
$=\sin ^{-1}(\sin (\pi-(\pi-x))$
(to get $y$ in principal range of $\sin ^{-1} x$ )
i.e.,
$y=\pi-x$
$\therefore \frac{\mathrm{dy}}{\mathrm{dx}}=-1$
From the last problem we see that $\frac{d y}{d x}_{x \rightarrow \frac{\pi^{-}}{2}}=1$ and $\frac{d y}{d x}_{x \rightarrow \frac{\pi^{+}}{2}}=-1$
So, $y$ is not differentiable at $x=\frac{\pi}{2}$.
Extending this, we can say that $y$ is not differentiable at $x=(2 n+1) \frac{\pi}{2}$
So, for $\mathrm{X} \in\left[\frac{\pi}{2}, \frac{3 \pi}{2}\right]$
$\frac{\mathrm{dy}}{\mathrm{dx}}=\left\{\begin{array}{c}-1, \mathrm{x} \in\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right) \\ \text { does not exist at } \mathrm{x}=\frac{\pi}{2}, \frac{3 \pi}{2}\end{array}\right.$ (Ans)