Solve this following


Let $f:(-1,1) \rightarrow R$ be a function defined by

$f(x)=\max \left\{-|x|,-\sqrt{1-x^{2}}\right\} .$ If $K$ be the set of

all points at which $f$ is not differentiable, then $\mathrm{K}$ has exactly :

  1. Three elements

  2. One element

  3. Five elements

  4. Two elements

Correct Option: 1


$\mathrm{f}:(-1,1) \rightarrow \mathrm{R}$

$f(x)=\max \left\{-|x|,-\sqrt{1-x^{2}}\right\}$

Non-derivable at 3 points in $(-1,1)$

Option (1)

Leave a comment