Let $\mathrm{z}_{1}$ and $\mathrm{z}_{2}$ be any two non-zero complex numbers such that $3\left|z_{1}\right|=4\left|z_{2}\right|$.
If $\mathrm{z}=\frac{3 \mathrm{z}_{1}}{2 \mathrm{z}_{2}}+\frac{2 \mathrm{z}_{2}}{3 \mathrm{z}_{1}}$ then :
Correct Option: , 4
$3\left|z_{1}\right|=4\left|z_{2}\right|$
$\Rightarrow \frac{\left|z_{1}\right|}{\left|z_{2}\right|}=\frac{4}{3}$
$\Rightarrow \frac{\left|3 z_{1}\right|}{\left|2 z_{2}\right|}=2$
Let $\frac{3 \mathrm{z}_{1}}{2 \mathrm{z}_{2}}=\mathrm{a}=2 \cos \theta+2 \mathrm{i} \sin \theta$
$\mathrm{z}=\frac{3 \mathrm{z}_{1}}{2 \mathrm{z}_{2}}+\frac{2 \mathrm{z}_{2}}{3 \mathrm{z}_{1}}=\mathrm{a}+\frac{1}{\mathrm{a}}$
$=\frac{5}{2} \cos \theta+\frac{3}{2} i \sin \theta$
Now all options are incorrect
Remark :
There is a misprint in the problem actual problem should be :
"Let $z_{1}$ and $z_{2}$ be any non-zero complex number such that $3\left|z_{1}\right|=2\left|z_{2}\right|$.
If $\mathrm{z}=\frac{3 \mathrm{z}_{1}}{2 \mathrm{z}_{2}}+\frac{2 \mathrm{z}_{2}}{3 \mathrm{z}_{1}}$, then"
Given
$3\left|z_{1}\right|=2\left|z_{2}\right|$
Now $\left|\frac{3 z_{1}}{2 z_{2}}\right|=1$
Let $\frac{3 z_{1}}{2 z_{2}}=a=\cos \theta+i \sin \theta$
$\mathrm{z}=\frac{3 \mathrm{z}_{1}}{2 \mathrm{z}_{2}}+\frac{2 \mathrm{z}_{2}}{3 \mathrm{z}_{1}}$
$=a+\frac{1}{a}=2 \cos \theta$
$\therefore \quad \operatorname{Im}(z)=0$
Now option (4) is correct.