State whether the given statement is true false:
(i) If $A \subset B$ and $x \notin B$ than $x \notin A$.
(ii) If $A \subseteq \phi$ then $A=\phi$
(iii) If $A, B$ and $C$ are three sets such than $A \in B$ and $B \subset C$ then $A \subset C$.
(iv) If $A, B$ and $C$ are three sets such than $A \subset B$ and $B \in C$ then $A \in C$.
(v) If $A, B$ and $C$ are three sets such that $A \notin B$ and $B \notin C$ then $A \notin C$.
(vi) If $A$ and $B$ are sets such that $x A$ and $A \in B$ then $x \in B$.
(i) True
Explanation: We have A ⊂ B since A is a subset of B then all elements of A should be in B.
Let $A=\{1,2\}$ and $B=\{1,2,3\}$
Let $x=4 \notin B$
Also we observe that $4 \notin \mathrm{A}$.
Hence, If $A \subset B$ and $x \notin B$ than $x \notin A$.
(ii) True
Explanation: We have, $A \subseteq \phi$
Now, A is a subset of : set , this implies A is also an empty set.
$\Rightarrow A=\phi$
(iii) False
Explanation: Let $A=\{a\}, B=\{\{a\}, b\}$
here, $A \in B$
Now, let $C=\{\{a\}, b, c\}$.
Since, $\{a\}, b$ is in $B$ and also in $C$ thus, $B \subset C$.
But, A ={a} and {a} is an element of C, since the element of a set cannot be a subset of a set.
Hence, $\mathrm{A} \not \subset \mathrm{C}$.
(iv) False
Explanation: Let A = {a},B = {a, b} and C = {{a, b}, c}.
Then, $A \subset B$ and $B \in C$. But, $A \notin C$ since $\{a\}$ is not an element of $C$.
(v) False
Explanation: Let $A=\{a\}, B=\{b, c\}$ and $C=\{a, c\}$.
Since $a \in A$ and $a \notin B$. Then, $A \not \subset B$
Now, $b \in B$ and $b \notin C \Rightarrow B \not \subset C$.
But, $A \subset C$ since, $a \in A$ and $a \in C$.
(vi) False
Explanation: Let $A=\{x\}, B=\{\{x\}, y\}$
Now, $\mathrm{x} \in \mathrm{A}$ and $\{\mathrm{x}\}$ is an element of $\mathrm{B} \Rightarrow \mathrm{A} \in \mathrm{B}$
But, $x$ is not an element of $B$. Thus, $x \notin B$.
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.