The 6th and 17th terms of an A.P. are 19 and 41 respectively, find the 40th term.
In the given problem, we are given $6^{\text {th }}$ and $17^{\text {th }}$ term of an A.P.
We need to find the $40^{\text {th }}$ term
Here,
$a_{6}=19$
$a_{17}=41$
Now, we will find $a_{6}$ and $a_{17}$ using the formula $a_{n}=a+(n-1) d$
So,
$a_{6}=a+(6-1) d$
$19=a+5 d$ .......(1)
Also,
$a_{17}=a+(17-1) d$
$41=a+16 d$.......(2)
So, to solve for a and d
On subtracting (1) from (2), we get
$a+16 d-a-5 d=41-19$
$11 d=22$
$d=\frac{22}{11}$
$d=2$.......$(3)$
So, to solve for a and d
Substituting (3) in (1), we get
$19=a+5(2)$
$19-10=a$
$a=9$
Thus,
$a=9$
$d=2$
$n=40$
Substituting the above values in the formula $a_{n}=a+(n-1) d$
$a_{40}=9+(40-1) 2$
$a_{40}=9+80-2$
$a_{40}=87$
Therefore, $a_{40}=87$