The areas of two concentric circles are 1386 cm2 and 962.5 cm2. The width of the ring is
(a) 2.8 cm
(b) 3.5 cm
(c) 4.2 cm
(d) 3.8 cm
(b) 3.5 cm
Let r cm and R cm be the radii of two concentric circles.
Thus, we have:
$\pi \mathrm{R}^{2}=1386$
$\Rightarrow \frac{22}{7} \times R^{2}=1386$
$\Rightarrow R^{2}=\left(1386 \times \frac{7}{22}\right) \mathrm{cm}^{2}$
$\Rightarrow R^{2}=441 \mathrm{~cm}^{2}$
$\Rightarrow R=21 \mathrm{~cm}$
Also,
$\pi \mathrm{r}^{2}=962.2$
$\Rightarrow \frac{22}{7} \times \mathrm{r}^{2}=962.2$
$\Rightarrow \mathrm{r}^{2}=\left(962.2 \times \frac{7}{22}\right) \mathrm{cm}^{2}$
$\Rightarrow \mathrm{r}^{2}=\left(\frac{962.2}{10} \times \frac{7}{22}\right) \mathrm{cm}^{2}$
$\Rightarrow \mathrm{r}^{2}=\frac{1225}{4} \mathrm{~cm}^{2}$
$\Rightarrow r=\frac{35}{2} \mathrm{~cm}$
$\therefore$ Width of the ring $=(R-r)$
$=\left(21-\frac{35}{2}\right) \mathrm{cm}$
$=\frac{7}{2} \mathrm{~cm}$
$=3.5 \mathrm{~cm}$
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.