The circumference of a circle exceeds

Question:

The circumference of a circle exceeds the diameter by 16.8 cm. Find the circumference of the circle.

Solution:

Let the radius of a circle be $r \mathrm{~cm}$, then diameter of circle is $2 r \mathrm{~cm}$ and Circumference is $C=2 \pi r \mathrm{~cm}$.

It is given that the circumference exceeds the diameter of circle by $16.8 \mathrm{~cm}$.

So, circumference $=16.8+$ diameter

$2 \pi r=16.8+2 r \mathrm{~cm}$

$2 \times \frac{22}{7} \times r=16.8+2 r \mathrm{~cm}$

$44 r=117.6+14 r \mathrm{~cm}$

$30 r=117.6 \mathrm{~cm}$

$r=3.92 \mathrm{~cm}$

Now the circumference is

$C=2 \pi r \mathrm{~cm}$

$=2 \times \frac{22}{7} \times 3.92 \mathrm{~cm}$

$=24.64 \mathrm{~cm}$

 

Leave a comment