Question.
The circumference of the base of cylindrical vessel is $132 \mathrm{~cm}$ and its height is $25 \mathrm{~cm}$. How many litres of water can it hold? (1000 cm $^{3}=1 /$ ) $\left[\right.$ Assume $\left.\pi=\frac{22}{7}\right]$
Solution:
Let the radius of the cylindrical vessel be r.
Height (h) of vessel = 25 cm
Circumference of vessel $=132 \mathrm{~cm}$
$2 \pi r=132 \mathrm{~cm}$
$r=\left(\frac{132 \times 7}{2 \times 22}\right) \mathrm{cm}=21 \mathrm{~cm}$
Volume of cylindrical vessel $=\pi r^{2} h$
$=\left[\frac{22}{7} \times(21)^{2} \times 25\right] \mathrm{cm}^{3}$
$=34650 \mathrm{~cm}^{3}$
$=\left(\frac{34650}{1000}\right)$ litres $\quad\left[\because 1\right.$ litre $\left.=1000 \mathrm{~cm}^{3}\right]$
$=34.65$ litres
Therefore, such vessel can hold 34.65 litres of water.
Let the radius of the cylindrical vessel be r.
Height (h) of vessel = 25 cm
Circumference of vessel $=132 \mathrm{~cm}$
$2 \pi r=132 \mathrm{~cm}$
$r=\left(\frac{132 \times 7}{2 \times 22}\right) \mathrm{cm}=21 \mathrm{~cm}$
Volume of cylindrical vessel $=\pi r^{2} h$
$=\left[\frac{22}{7} \times(21)^{2} \times 25\right] \mathrm{cm}^{3}$
$=34650 \mathrm{~cm}^{3}$
$=\left(\frac{34650}{1000}\right)$ litres $\quad\left[\because 1\right.$ litre $\left.=1000 \mathrm{~cm}^{3}\right]$
$=34.65$ litres
Therefore, such vessel can hold 34.65 litres of water.