The cost price of 10 articles is equal to the selling price of 9 articles. Find the profit percent.
Let the cost price of one article be Rs. C and the selling price be Rs. S
Therefore, $10 \mathrm{C}=9 \mathrm{~S}$
$\mathrm{C}=\frac{9}{10} \mathrm{~S}$
So, the cost price is less than the selling price.
S. P. $=\left(\frac{100+P \text { rofit } \%}{100}\right)$ C. P
$\mathrm{S}=\left(\frac{100+P \text { rofit } \%}{100}\right) \mathrm{C}$
$\frac{\mathrm{S}}{\mathrm{C}}=\left(\frac{100+P \text { rofit } \%}{100}\right)$
$\frac{10}{9}=\left(\frac{100+P \text { rofit } \%}{100}\right)$
$\frac{1000}{9}=100+P$ rofit $\%$
$\frac{1000}{9}-100=P$ rofit $\%$
$P$ rofit $\%=\frac{1000-900}{9}$
$=11 \frac{1}{9}$
Therefore, the required profit percent is $11 \frac{1}{9} \%$.
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.