Deepak Scored 45->99%ile with Bounce Back Crack Course. You can do it too!

The difference of the squares of two natural numbers is 45. The squares of the smaller number is four times the largest number.

Question:

The difference of the squares of two natural numbers is 45. The squares of the smaller number is four times the largest number. Find the numbers.

Solution:

Let the greater number be $x$ and the smaller number be $y$.

According to the question:

$x^{2}-y^{2}=45 \quad \ldots($ i)

$y^{2}=4 x \quad \ldots$ (ii)

From (i) and (ii), we get:

$x^{2}-4 x=45$

$\Rightarrow x^{2}-4 x-45=0$

$\Rightarrow x^{2}-(9-5) x-45=0$

$\Rightarrow x^{2}-9 x+5 x-45=0$

$\Rightarrow x(x-9)+5(x-9)=0$

$\Rightarrow(x-9)(x+5)=0$

$\Rightarrow x-9=0$ or $x+5=0$

$\Rightarrow x=9$ or $x=-5$

$\Rightarrow x=9 \quad(\because x$ is a natural number $)$

Putting the value of $x$ in equation (ii), we get:

$y^{2}=4 \times 9$

$\Rightarrow y^{2}=36$

$\Rightarrow y=6$

Hence, the two numbers are 9 and 6 .

 

Leave a comment

None
Free Study Material