Question:
The direction ratios of normal to the plane through the points (0, –1, 0) and (0, 0, 1) and making an anlge $\frac{\pi}{4}$ with the plane $y-z+5=0$ are:
Correct Option: , 4
Solution:
Let the equation of plane be
$a(x-0)+b(y+1)+c(z-0)=0$
It passes through $(0,0,1)$ then
$b+c=0$ ......(1)
Now $\cos \frac{\pi}{4}=\frac{a(0)+b(1)+c(-1)}{\sqrt{2} \sqrt{a^{2}+b^{2}+c^{2}}}$
$\Rightarrow a^{2}=-2 b c$ and $b=-c$
we get $a^{2}=2 c^{2}$
$\Rightarrow \mathrm{a}=\pm \sqrt{2} \mathrm{c}$
$\Rightarrow$ direction ratio $(a, b, c)=(\sqrt{2},-1,1)$ or
$(\sqrt{2}, 1,-1)$