Question.
The first term of an AP is 5, the last term is 45 and the sum is 400. Find the number of terms and the common difference.
The first term of an AP is 5, the last term is 45 and the sum is 400. Find the number of terms and the common difference.
Solution:
$a=5$, last term $t_{n}=45$ and $S_{n}=400$
$\mathrm{S}_{\mathrm{n}}=400 \Rightarrow \frac{\mathrm{n}}{2}\left\{\mathrm{t}_{1}+\mathrm{t}_{\mathrm{n}}\right\}=400$
$\Rightarrow \frac{n}{2}\{5+45\}=400 \Rightarrow \frac{n}{2} \times 50=400$
$\Rightarrow \mathrm{n}=16$
Now, $\mathrm{t}_{\mathrm{n}}=45 \quad \Rightarrow \mathrm{t}_{16}=45$
$\Rightarrow \mathrm{a}+15 \mathrm{~d}=45 \quad \Rightarrow 5+15 \mathrm{~d}=45$
$\Rightarrow 15 \mathrm{~d}=40 \quad \Rightarrow \mathrm{d}=8 / 3$
$a=5$, last term $t_{n}=45$ and $S_{n}=400$
$\mathrm{S}_{\mathrm{n}}=400 \Rightarrow \frac{\mathrm{n}}{2}\left\{\mathrm{t}_{1}+\mathrm{t}_{\mathrm{n}}\right\}=400$
$\Rightarrow \frac{n}{2}\{5+45\}=400 \Rightarrow \frac{n}{2} \times 50=400$
$\Rightarrow \mathrm{n}=16$
Now, $\mathrm{t}_{\mathrm{n}}=45 \quad \Rightarrow \mathrm{t}_{16}=45$
$\Rightarrow \mathrm{a}+15 \mathrm{~d}=45 \quad \Rightarrow 5+15 \mathrm{~d}=45$
$\Rightarrow 15 \mathrm{~d}=40 \quad \Rightarrow \mathrm{d}=8 / 3$
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.