`
Question:
The locus of mid-points of the line segments joining $(-3,-5)$ and the points on the ellipse
$\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ is :
Correct Option: , 3
Solution:
General point on $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ is $A(2 \cos \theta, 3 \sin \theta)$
given $\mathrm{B}(-3,-5)$
midpoint $C\left(\frac{2 \cos \theta-3}{2}, \frac{3 \sin \theta-5}{2}\right)$
$\mathrm{h}=\frac{2 \cos \theta-3}{2} ; \mathrm{k}=\frac{3 \sin \theta-5}{2}$
$\Rightarrow\left(\frac{2 \mathrm{~h}+3}{2}\right)^{2}+\left(\frac{2 \mathrm{k}+5}{3}\right)^{2}=1$
$\Rightarrow 36 x^{2}+16 y^{2}+108 x+80 y+145=0$