The minimum and maximum


The minimum and maximum distances of a planet revolving around the Sun are $x_{1}$ and $x_{2}$. If the minimum speed of the planet on its trajectory is $v_{0}$ then its maximum speed will be :

  1. $\frac{\mathrm{v}_{0} \mathrm{x}_{1}^{2}}{\mathrm{x}_{2}^{2}}$

  2. $\frac{\mathrm{v}_{0} \mathrm{x}_{2}^{2}}{\mathrm{x}_{1}^{2}}$

  3. $\frac{\mathrm{V}_{0} \mathrm{x}_{1}}{\mathrm{x}_{2}}$

  4. $\frac{\mathrm{V}_{0} \mathrm{X}_{2}}{\mathrm{X}_{1}}$

Correct Option: , 4


Angular momentum conservation equation

$\mathrm{V}_{0} \mathrm{X}_{2}=\mathrm{V}_{1} \mathrm{X}_{1}$

$\mathrm{~V}_{1}=\frac{\mathrm{V}_{0} \mathrm{X}_{2}}{\mathrm{X}_{1}}$

Leave a comment


Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now