The number of distinct real


The number of distinct real roots of the equation $3 x^{4}+4 x^{3}-12 x^{2}+4=0$ is


$3 x^{4}+4 x^{3}-12 x^{2}+4=0$

So, Let $f(x)=3 x^{4}+4 x^{3}-12 x^{2}+4$

$\therefore \mathrm{f}^{\prime}(\mathrm{x})=12 \mathrm{x}\left(\mathrm{x}^{2}+\mathrm{x}-2\right)$

$=12 x(x+2)(x-1)$


Leave a comment


Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now