The number of integral values of


The number of integral values of $m$ for which the quadratic expression.

$(1+2 m) x^{2}-2(1+3 m) x+4(1+m), x \in R$, is

always positive, is :


  1. 8

  2. 7

  3. 6

  4. 3

Correct Option: , 2


Exprsssion is always positve it

$2 m+1>0 \Rightarrow m>-\frac{1}{2}$


$\mathrm{D}<0 \Rightarrow \mathrm{m}^{2}-6 \mathrm{~m}-3<0$

$3-\sqrt{12}<\mathrm{m}<3+\sqrt{12}$ ......(iii)

$\therefore$ Common interval is


$\therefore$ Intgral value of $\mathrm{m}\{0,1,2,3,4,5,6\}$

Leave a comment


Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now