**Question:**

The product of any two irrational numbers is

(a) always an irrational number

(b) always a rational number

(c) always an integer

(d) sometimes rational, sometimes irrational

**Solution:**

(d) We know that, the product of any two irrational numbers is sometimes rational and sometimes irrational.

e.g., $\sqrt{2} \times \sqrt{2}=2$ (rational) and $\sqrt{2} \times \sqrt{3}=\sqrt{6}$ (irrational)