The radii of the ends of a bucket 30 cm high are 21 cm and 7 cm. Find its capacity in litres and the amount of sheet required to make this bucket.
Height of the bucket = 30 cm.
$r_{1}=21 \mathrm{~cm}$
$r_{2}=7 \mathrm{~cm}$
Therefore,
Capacity of the bucket
$=\frac{\pi h}{3}\left[r_{1}^{2}+r_{1} r_{2}+r_{2}^{2}\right]$
$=\frac{22}{7} \times \frac{30}{3}\left[(21)^{2}+21 \times 7+(7)^{2}\right]$
$=20020 \mathrm{~cm}^{3}$
$=20.02$ litres
The slant height of the bucket
$l=\sqrt{h^{2}+\left(r_{1}-r_{2}\right)^{2}}$
$=\sqrt{900+(21-7)^{2}}$
$=\sqrt{900+196}$
$=\sqrt{1096}=33.105 \mathrm{~cm}$
$=\sqrt{900+(21-7)^{2}}$
$=\sqrt{900+196}$
$=\sqrt{1096}=33.105 \mathrm{~cm}$
$=\pi\left(r_{1}+r_{2}\right) \times l$
$=\pi(21+7) \times 33.1$
$=88 \times 33.1$
$\approx 2913 \mathrm{~cm}^{2}$
Area of the base
$=\pi r^{2}$
$=\frac{22}{7} \times 7^{2}$
$=154$
Total sheet required to make this bucket
$=2913+154$
$=3067 \mathrm{~cm}^{2}$