The shadow of a tower standing on a level ground is found to be 40 m longer when Sun's altitude is 30° than when it was 60°. Find the height of the tower.
Let be the tower of height
.given the shadow of tower
m. attitude of sun are
and
. Here we have to find height of tower. Let
and
.
In $\triangle A C B$
$\Rightarrow \quad \tan C=\frac{A B}{B C}$
$\Rightarrow \quad \tan 60^{\circ}=\frac{h}{x}$
$\Rightarrow \quad \sqrt{3}=\frac{h}{x}$
$\Rightarrow \quad x=\frac{h}{\sqrt{3}}$
Again in $\triangle A D B$
$\Rightarrow \quad \tan D=\frac{A B}{D B}$
$\Rightarrow \quad \tan 30^{\circ}=\frac{h}{40+x}$
$\Rightarrow \quad \frac{1}{\sqrt{3}}=\frac{h}{40+x}$
$\Rightarrow \quad 40+x=\sqrt{3} h$
Put $x=\frac{h}{\sqrt{3}}$
$\Rightarrow \quad 40+\frac{h}{\sqrt{3}}=\sqrt{3} h$
$\Rightarrow \quad 40=\sqrt{3} h-\frac{h}{\sqrt{3}}$
$\Rightarrow \quad 40=\frac{2 h}{\sqrt{3}}$
$\Rightarrow \quad h=20 \sqrt{3}$
Hence height of tower is $20 \sqrt{3} \mathrm{~m}$.