Question.
The sum of the 4th and 8th terms of an AP is 24 and the sum of the 6th and 10th terms is 44. Find the first three terms of the AP.
The sum of the 4th and 8th terms of an AP is 24 and the sum of the 6th and 10th terms is 44. Find the first three terms of the AP.
Solution:
$\mathrm{t}_{4}+\mathrm{t}_{8}=24 ; \mathrm{t}_{6}+\mathrm{t}_{10}=44$
$\Rightarrow(a+3 d)+(a+7 d)=24$
$(a+5 d)+(a+9 d)=44$
$\Rightarrow 2 \mathrm{a}+10 \mathrm{~d}=24 ; 2 \mathrm{a}+14 \mathrm{~d}=44$
We have $a+5 d=12$ ...(1)
and $\mathrm{a}+7 \mathrm{~d}=22$ ...(2)
Subtracting (1) from (2), we get
$2 d=10 \Rightarrow d=5$
From (i) $a+5 \times 5=12, a=-13$
$\mathrm{t}_{1}=-13, \mathrm{t}_{2}=-8, \mathrm{t}_{3}=-3$
$\mathrm{t}_{4}+\mathrm{t}_{8}=24 ; \mathrm{t}_{6}+\mathrm{t}_{10}=44$
$\Rightarrow(a+3 d)+(a+7 d)=24$
$(a+5 d)+(a+9 d)=44$
$\Rightarrow 2 \mathrm{a}+10 \mathrm{~d}=24 ; 2 \mathrm{a}+14 \mathrm{~d}=44$
We have $a+5 d=12$ ...(1)
and $\mathrm{a}+7 \mathrm{~d}=22$ ...(2)
Subtracting (1) from (2), we get
$2 d=10 \Rightarrow d=5$
From (i) $a+5 \times 5=12, a=-13$
$\mathrm{t}_{1}=-13, \mathrm{t}_{2}=-8, \mathrm{t}_{3}=-3$
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.