The sum of the first four terms of an A.P. is 56. The sum of the last four terms is 112.

Question:

The sum of the first four terms of an A.P. is 56. The sum of the last four terms is 112.  If its first term is 11, then find the number of terms.

Solution:

Let the A.P. be $a, a+d, a+2 d, a+3 d, \ldots a+(n-2) d, a+(n-1) d$

Sum of first four terms $=a+(a+d)+(a+2 d)+(a+3 d)=4 a+6 d$

Sum of last four terms $=[a+(n-4) d]+[a+(n-3) d]+[a+(n-2) d]$

$+[a+n-1) d]$

$=4 a+(4 n-10) d$

According to the given condition,

$4 a+6 d=56$

$\Rightarrow 4(11)+6 d=56[$ Since $a=11$ (given) $]$

$\Rightarrow 6 d=12$

$\Rightarrow d=2$

$\therefore 4 a+(4 n-10) d=112$

$\Rightarrow 4(11)+6 d=56[$ Since $a=11$ (given) $]$

$\Rightarrow 6 d=12$

$\Rightarrow d=2$

$\therefore 4 a+(4 n-10) d=112$

$\Rightarrow 4(11)+(4 n-10) 2=112$

$\Rightarrow(4 n-10) 2=68$

$\Rightarrow 4 n-10=34$

$\Rightarrow 4 n=44$

$\Rightarrow n=11$

Thus, the number of terms of the A.P. is 11.

Leave a comment

Close

Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now