The sum of three numbers in G.P. is 21 and the sum of their squares is 189. Find the numbers.
Let the required numbers be $a, a r$ and $a r^{2}$.
Sum of the numbers = 21
$\Rightarrow a+a r+a r^{2}=21$
$\Rightarrow a\left(1+r+r^{2}\right)=21$ ...(1)
Sum of the squares of the numbers = 189
$\Rightarrow a^{2}+(a r)^{2}+\left(a r^{2}\right)^{2}=189$
$\Rightarrow a^{2}+(a r)^{2}+\left(a r^{2}\right)^{2}=189$
$\Rightarrow a^{2}\left(1+r^{2}+r^{4}\right)=189$ ....(2)
Now, $a\left(1+r+r^{2}\right)=21 \quad[$ From $(\mathrm{i})]$
Squaring both the sides
$\Rightarrow a^{2}\left(1+r+r^{2}\right)^{2}=441$
$\Rightarrow a^{2}\left(1+r^{2}+r^{4}\right)+2 a^{2} r\left(1+r+r^{2}\right)=441$
$\Rightarrow 189+2 a r\left\{a\left(1+r+r^{2}\right)\right\}=441 \quad[$ Using $($ ii $)]$
$\Rightarrow 189+2 a r \times 21=441 \quad[$ Using $(\mathrm{i})]$
$\Rightarrow a r=6$
$\Rightarrow a=\frac{6}{r}$ ....(3)
Putting $a=\frac{6}{r}$ in (i)
$\frac{6}{r}\left(1+r+r^{2}\right)=21$
$\Rightarrow \frac{6}{r}+6+6 r=21$
$\Rightarrow 6 r^{2}+6 r+6=21 r$
$\Rightarrow 6 r^{2}-15 r+6=0$
$\Rightarrow 3\left(2 r^{2}-5 r+2\right)=0$
$\Rightarrow 2 r^{2}-5 r+2=0$
$\Rightarrow(2 r-1)(r-2)=0$
$\Rightarrow r=\frac{1}{2}, 2$
Putting $r=\frac{1}{2}$ in $a=\frac{6}{r}$, we get $a=12$.
So, the numbers are 12,6 and 3 .
Putting $r=2$ in $a=\frac{6}{r}$, we get $a=3$.
So, the numbers are 3,6 and 12 .
Hence, the numbers that are in G.P are 3,6 and 12 .