The tangent at a point C of a circle and a diameter AB when extended intersect at P. If ∠PCA = 110°, find ∠CBA.
Here, AB is a diameter of the circle from point C and a tangent is drawn which meets at a point P.
Join OC. Here, OC is radius.
Since, tangent at any point of a circle is perpendicular to the radius through point of contact circle.
$\therefore \quad O C \perp P C$
Now, $\angle P C A=110^{\circ}$ [given]
\$\Rightarrow \quad \angle P C O+\angle O C A=110^{\circ}$
$\Rightarrow \quad 90^{\circ}+\angle O C A=110^{\circ}$
$\Rightarrow \quad \angle O C A=20^{\circ}$
$\therefore$ $O C=O A=$ Radius of circle
$\Rightarrow$ $\angle O C A=\angle O A C=20^{\circ}$
[since, two sides are equal, then their opposite angles are equal]
Since, $P C$ is a tangent, so $\angle B C P=\angle C A B=20^{\circ}$
[angles in a alternate segment are equal]
In $\triangle P B C, \quad \angle P+\angle C+\angle A=180^{\circ}$
$\angle P=180^{\circ}-(\angle C+\angle A)$
$=180^{\circ}-\left(110^{\circ}+20^{\circ}\right)$
$=180^{\circ}-130^{\circ}=50^{\circ}$
in $\triangle P B C, \quad \angle B P C+\angle P C B+\angle P B C=180^{\circ}$
[sum of all interior angles of any triangle is $180^{\circ}$ ]
$\Rightarrow \quad 50^{\circ}+20^{\circ}+\angle P B C=180^{\circ}$
$\Rightarrow \quad \angle P B C=180^{\circ}-70^{\circ}$
$\Rightarrow \quad \angle P B C=110^{\circ}$
Since, $A P B$ is a straight line.
$\therefore \quad \angle P B C+\angle C B A=180^{\circ}$
$\Rightarrow \quad \angle C B A=180^{\circ}-110^{\circ}=70^{\circ}$