The value of $c$ in Lagrange's mean value theorem for the function $f(x)=x(x-2)$ when $x \in[1,2]$ is
(a) 1
(b) 1/2
(c) 2/3
(d) 3/2
(d) $\frac{3}{2}$
We have
$f(x)=x(x-2)$
It can be rewritten as $f(x)=x^{2}-2 x$.
We know that a polynomial function is everywhere continuous and differentiable.
Since $f(x)$ is a polynomial, it is continuous on $[1,2]$ and differentiable on $(1,2)$.
Thus, $f(x)$ satisfies both the conditions of Lagrange's theorem on $[1,2]$.
So, there must exist at least one real number $c \in(1,2)$ such that
$f^{\prime}(c)=\frac{f(2)-f(1)}{2-1}=\frac{f(2)-f(1)}{1}$
Now, $f(x)=x^{2}-2 x$
$\Rightarrow f^{\prime}(x)=2 x-2$,
and $f(1)=-1, f(2)=0$
$\therefore f^{\prime}(x)=\frac{f(2)-f(1)}{2-1}$
$\Rightarrow f^{\prime}(x)=\frac{0+1}{1}$
$\Rightarrow 2 x-2=1$
$\Rightarrow x=\frac{3}{2}$
$\therefore c=\frac{3}{2} \in(1,2)$