If the curves, $\frac{x^{2}}{a}+\frac{y^{2}}{b}=1$ and $\frac{x^{2}}{c}+\frac{y^{2}}{d}=1$ intersect each other at an angle of $90^{\circ}$, then which of the following relations is true?
Correct Option: 2,
$\frac{x^{2}}{a}+\frac{y^{2}}{b}=1$
diff : $\frac{2 x}{a}+\frac{2 y}{b} \frac{d y}{d x}=0 \Rightarrow \frac{y}{b} \frac{d y}{d x}=\frac{-x}{a}$
$\frac{d y}{d x}=\frac{-b x}{a y} \ldots(2)$
$\frac{x^{2}}{c}+\frac{y^{2}}{d}=1 \ldots(3)$
Diff : $\frac{d y}{d x}=\frac{-d x}{c y}$....(4)
$\mathrm{m}_{1} \mathrm{~m}_{2}=-1 \Rightarrow \frac{-\mathrm{bx}}{\mathrm{ay}} \times \frac{-\mathrm{dx}}{\mathrm{cy}}=-1$
$\Rightarrow \mathrm{bdx}^{2}=-\mathrm{acy}^{2} \quad \ldots \ldots(5)$
$(1)-(3) \Rightarrow\left(\frac{1}{a}-\frac{1}{c}\right)^{x^{2}}+\left(\frac{1}{b}-\frac{1}{d}\right) y^{2}=0$
$\Rightarrow \frac{c-a}{a c} x^{2}+\frac{d-b}{b d} \times\left(\frac{-b d}{a c}\right) x^{2}=0($ using 5$)$
$\Rightarrow(c-a)-(d-b)=0$
$\Rightarrow c-a=d-b$