Three coins are tossed 200 times and we get

Question:

Three coins are tossed 200 times and we get
When three coins are tossed at random, what is the probability of getting

Solution:

Total number of tosses =  200
Number of times 3 heads appear = 39
Number of times 2 heads appear = 58
Number of times 1 head appears = 67
Number of times 0 head appears = 36

In a random toss of three coins, let E1E2E3 and E4  be the events of getting 3 heads, 2 heads, 1 head and 0 head, respectively. Then;

(i) $P($ getting 3 heads $)=P\left(E_{1}\right)=\frac{\text { Number of times } 3 \text { heads appear }}{\text { Total number of trials }}=\frac{39}{200}=0.195$

(ii) $P($ getting 1 head $)=P\left(E_{2}\right)=\frac{\text { Number of times } 1 \text { head appears }}{\text { Total number of trials }}=\frac{67}{200}=0.335$

(iii) $P$ (getting 0 head) $=P\left(E_{3}\right)=\frac{\text { Number of times } 0 \text { head appears }}{\text { Total number of trials }}=\frac{36}{200}=0.18$

(iv) $P$ (getting 2 heads) $=P\left(E_{4}\right)=\frac{\text { Number of times } 2 \text { heads appear }}{\text { Total number of trials }}=\frac{58}{200}=0.29$

Remark: Clearly, when three coins are tossed, the only possible outcomes are E1E2E3 and E4 and P(E1) + P(E2) +  P(E3) + P(E4) = (0.195 + 0.335 + 0.18 + 0.29) = 1