Tick (✓) the correct answer
The sum that amounts to Rs 4913 in 3 years at $6 \frac{1}{4} \%$ per annum compounded annually, is
(a) Rs 3096
(b) Rs 4076
(c) Rs 4085
(d) Rs 4096
(d) Rs 4096
We have Rs $4913=\left\{P \times\left(1+\frac{25}{100 \times 4}\right)^{3}\right\}$
$\Rightarrow \mathrm{Rs} 4913=\left\{P \times\left(\frac{16+1}{16}\right)^{3}\right\}$
$\Rightarrow \mathrm{Rs} 4913=\left\{P \times\left(\frac{17}{16}\right) \times\left(\frac{17}{16}\right) \times\left(\frac{17}{16}\right)\right\}$
$\Rightarrow \mathrm{Rs} 4913=\frac{4913 P}{4096}$
$\Rightarrow P=\mathrm{Rs} \frac{4913 \times 4096}{4913}=\mathrm{Rs} 4096$
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.