Question:
Two identical cubes each of volume 64 cm3 are joined together end to end. What is the surface area of the resulting cuboid?
Solution:
Let the length of side of a cube = a cm
Given, volume of the cube, $a^{3}=64 \mathrm{~cm}^{3} \Rightarrow a=4 \mathrm{~cm}$ On joining two cubes, we get a cuboid whose
length, $l=2 \mathrm{acm}$
breadth, $b=a \mathrm{~cm}$
and height, $h=a \mathrm{~cm}$
Now, surface area of the resulting cuboid $=2(l b+b h+h l)$
$=2(2 a \cdot a+a \cdot a+a \cdot 2 a)$
$=2\left(2 a^{2}+a^{2}+2 a^{2}\right)=2\left(5 a^{2}\right)$
$=10 a^{2}=10(4)^{2}=160 \mathrm{~cm}^{2}$