Question:
Using binomial theorem, indicate which is larger (1.1)10000 or 1000.
Solution:
We have:
(1.1)10000
$=(1+0.1)^{10000}$
$={ }^{10000} C_{0} \times(0.1)^{0}+{ }^{10000} C_{1} \times(0.1)^{1}+{ }^{10000} C_{2} \times(0.1)^{2}+\ldots{ }^{10000} C_{10000} \times(0.1)^{10000}$
$=1+10000 \times 0.1+$ other positive terms
$=1+10000+$ other positive terms
$=10001+$ other positive terms
$\because 10001>1000$
$\therefore(1.1)^{10000}>1000$