Using factor theorem, factorize of the polynomials:
$2 y^{3}+y^{2}-2 y-1$
Given, $f(y)=2 y^{3}+y^{2}-2 y-1$
The constant term is 2
The factors of 2 are ± 1, ± 1/2
Let, y – 1= 0
=> y = 1
$f(1)=2(1)^{3}+(1)^{2}-2(1)-1$
= 2 + 1 – 2 – 1
= 0
So, (y – 1) is the factor of f(y)
Divide f(y) with (y – 1) to get other factors
By, long division
$2 y^{2}+3 y+1$
$y-1,2 y^{3}+y^{2}-2 y-1$
$2 y^{3}-2 y^{2}$
(-) (+)
$3 y^{2}-2 y$
$3 y^{2}-3 y$
(-) (+)
y – 1
y – 1
(-) (+)
0
$=2 y^{3}+y^{2}-2 y-1=(y-1)\left(2 y^{2}+3 y+1\right)$
Now,
$2 y^{2}+3 y+1=2 y^{2}+2 y+y+1$
= 2y(y + 1) + 1(y + 1)
= (2y + 1) (y + 1) are the factors
Hence, $2 y^{3}+y^{2}-2 y-1=(y-1)(2 y+1)(y+1)$
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.