Using short cut method, find the mean, variation and standard deviation for the data :
Question:

Using short cut method, find the mean, variation and standard deviation for the data :

 

Solution:

To find: MEAN

Now, $\operatorname{Mean}(\overline{\mathrm{x}})=\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}$

$=\frac{760}{40}$

$=19$

To find: VARIANCE

Variance, $\sigma^{2}=\frac{\sum \mathrm{f}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2}}{\mathrm{~N}}$

$=\frac{1736}{40}$

$=43.4$

To find: STANDARD DEVIATION

Standard Deviation $(\sigma)=\sqrt{\text { Variance }}$

$=\sqrt{43.4}$

$=6.58$

 

Administrator

Leave a comment

Please enter comment.
Please enter your name.