Using short cut method, find the mean, variation and standard deviation for the data :

Question:

Using short cut method, find the mean, variation and standard deviation for the data :

 

Solution:

To find: MEAN

Now, $\operatorname{Mean}(\overline{\mathrm{x}})=\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}$

$=\frac{390}{20}$

$=19.5$

To find: VARIANCE

Variance, $\sigma^{2}=\frac{\sum \mathrm{f}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2}}{\mathrm{~N}}$

$=\frac{385}{20}$

$=19.25$

To find: STANDARD DEVIATION

Standard Deviation $(\sigma)=\sqrt{\text { Variance }}$

$=\sqrt{19.25}$

$=4.39$

 

Leave a comment

Close

Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now