Question:
Write –3i in polar form.
Solution:
Let, z = -3i
Let $0=r \cos \theta$ and $-3=r \sin \theta$
By squaring and adding, we get
$(0)^{2}+(-3)^{2}=(r \cos \theta)^{2}+(r \sin \theta)^{2}$
$\Rightarrow 0+9=r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)$
$\Rightarrow 9=r^{2}$
$\Rightarrow r=3$
$\therefore \cos \theta=0$ and $\sin \theta=-1$
Since, θ lies in fourth quadrant, we have
$\theta=\frac{3 \pi}{2}$
Thus, the required polar form is $3\left(\cos \left(\frac{3 \pi}{2}\right)+\operatorname{isin}\left(\frac{3 \pi}{2}\right)\right)$