Write a value


Write a value of $\int \frac{1}{x(\log x)^{n}} d x$


Let, $\log x=t$

Differentiating both sides with respect to $x$

$\frac{d t}{d x}=\frac{1}{x}$

$\Rightarrow d t=\frac{1}{x} d x$

$y=\int \frac{1}{t^{n}} d t$

Use formula $\int \frac{1}{t^{n}} d t=\frac{t^{-n+1}}{-n+1}$


Again, put $t=\log x$

$y=\frac{(\log x)^{-n+1}}{-n+1}+c$

Leave a comment


Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now