
Special Points of Oblique Projectile Motion :
(1) The three basic equations of motion, i.e.
$v=u+a t$ $s=u t+\frac{1}{2} a t^{2}$ $v^{2}=u^{2}+2 a s$
For projectile motion give :
$\mathrm{T}=\frac{2 \mathrm{u} \sin \theta}{\mathrm{g}}$ $R=\frac{u^{2} \sin 2 \theta}{g}$ $H=\frac{u^{2} \sin ^{2} \theta}{2 g}$
(2) In the case of projectile motion,
The horizontal component of velocity $(u \cos \theta)$, acceleration $(g)$ and mechanical energy remains constant.
Speed, velocity, the vertical component of velocity (u $\sin \theta$ ), momentum, kinetic energy, and potential energy all change. Velocity and K.E. are maximum at the point of projection, while minimum (but not zero) at the highest point.

$\theta \stackrel{\text { to }}{\longrightarrow} \theta^{\prime}=(90-\theta)$
then range $\quad R^{\prime}=\frac{u^{2} \sin 2 \theta^{\prime}}{g}=\frac{u^{2} \sin 2(90-\theta)}{g}=\frac{u^{2} \sin 2 \theta}{g}=R$

So a projectile has same range for angles of projection $\theta$ and $(90-\theta)$
But has different time of flight $(\mathrm{T})$, maximum height $(\mathrm{H}) \&$ trajectories
Range is also same for $\theta_{1}=45^{\circ}-\alpha \quad$ and $\quad \theta_{2}=45^{\circ}+\alpha .\left[\right.$ equal $\left.\frac{u^{2} \cos 2 \alpha}{g}\right]$
(4) For maximum Range
$R=R_{\max } \Rightarrow 2 \theta=90^{\circ}$
for $\quad \theta=45^{\circ}$
$R_{\max }=\frac{u^{2}}{g}$ [For $\sin 2 \theta=1=\sin 90^{\circ}$ or $\theta=45^{\circ}$ ]
When range is maximum $\Rightarrow$ Then maximum height reached
$\mathrm{H}=\frac{\mathrm{u}^{2} \sin ^{2} 45}{2 \mathrm{~g}}\left(\right.$ When $\left.\mathrm{R}_{\max }\right) \quad$ or $\quad \mathrm{H}=\frac{\mathrm{u}^{2}}{4 \mathrm{~g}}$
hence maximum height reached (for $R_{\max }$ ) $\quad H=\frac{R_{\max }}{4}$

(5) For height $\mathrm{H}$ to be maximum
$\mathrm{H}=\frac{\mathrm{u}^{2} \sin ^{2} \theta}{2 \mathrm{~g}}=\max \quad$ i.e. $\sin ^{2} \theta=1(\max )$ or for $\theta=90^{\circ}$
So that $\mathrm{H}_{\max }=\frac{\mathrm{u}^{2}}{2 \mathrm{~g}} \quad$ When projected vertically (i.e. at $\theta=90^{\circ}$ )
in this case Range $R=\frac{u^{2} \sin \left(2 \times 90^{\circ}\right)}{g}=\frac{u^{2} \sin 180^{\circ}}{g}=0$
$\mathrm{H}_{\max }=\frac{\mathrm{u}^{2}}{2 \mathrm{~g}}$ (For vertical projection) and $\mathrm{R}_{\max }=\frac{\mathrm{u}^{2}}{\mathrm{~g}}$ (For oblique projection with same velocity)
so $\quad \mathrm{H}_{\max }=\frac{\mathrm{R}_{\max }}{2}$
If a person can throw a projectile to a maximum distance $\left(w i t h, \theta=45^{\circ}\right) R_{\max }=\frac{u^{2}}{g}$.
The maximum height to which he can throw the projectile (with $\theta=90^{\circ}$ ) $\mathrm{H}_{\max }=\frac{\mathrm{R}_{\max }}{2}$
(6) At highest point
Potential energy will be max and equal to $(\mathrm{PE})_{\mathrm{H}}=\mathrm{mgH}=\mathrm{mg} \cdot \frac{\mathrm{u}^{2} \sin ^{2} \theta}{2 \mathrm{~g}}$ or $(\mathrm{PE})_{\mathrm{H}}=\frac{1}{2} \mathrm{mu}^{2} \sin ^{2} \theta$.
While K.E. will be minimum (but not zero) and at the highest point as the vertical component of velocity is zero.
$(\mathrm{KE})_{\mathrm{H}}=\frac{1}{2} \mathrm{mv}_{\mathrm{H}}^{2}=\frac{1}{2} \mathrm{~m}(\mathrm{u} \cos \theta)^{2} \quad=\frac{1}{2} \mathrm{mu}^{2} \cos ^{2} \theta$
so $(\mathrm{PE})_{\mathrm{H}}+(\mathrm{KE})_{\mathrm{H}}=\frac{1}{2} \mathrm{mu}^{2} \sin ^{2} \theta+\frac{1}{2} \mathrm{mu}^{2} \cos ^{2} \theta=\frac{1}{2} \mathrm{mu}^{2}=$ Total M.E.

$\left(\frac{P E}{K E}\right)_{H}=\frac{\frac{1}{2} m u^{2} \sin ^{2} \theta}{\frac{1}{2} m u^{2} \cos ^{2} \theta}=\tan ^{2} \theta$
(7) In case of projectile motion if range $R$ is $n$ times the maximum height $H$, i.e. $R=n H$
then $\frac{u^{2} \sin 2 \theta}{g}=n \cdot \frac{u^{2} \sin ^{2} \theta}{2 g}$
or $\quad 2 \cos \theta=\frac{n \cdot \sin \theta}{2}$
or $\quad \tan \theta=\frac{4}{n} \quad \Rightarrow \quad \theta=\tan ^{-1}\left(\frac{4}{n}\right)$
(8) Weight of a body in projectile motion is zero as it is a freely falling body.
Also Read
JEE Physics Notes
To watch Free Learning Videos on JEE by Kota’s top IITian Faculties Install the eSaral App