3D Geometry – JEE Main Previous Year Question with Solutions
JEE Main Previous Year Question of Math with Solutions are available at eSaral. Practicing JEE Main Previous Year Papers Questions of mathematics will help the JEE aspirants in realizing the question pattern as well as help in analyzing weak & strong areas. eSaral helps the students in clearing and understanding each topic in a better way. eSaral is providing complete chapter-wise notes of Class 11th and 12th both for all subjects. Besides this, eSaral also offers NCERT Solutions, Previous year questions for JEE Main and Advance, Practice questions, Test Series for JEE Main, JEE Advanced and NEET, Important questions of Physics, Chemistry, Math, and Biology and many more. Download eSaral app for free study material and video tutorials.
Q. Let the line $\frac{x-2}{3}=\frac{y-1}{-5}=\frac{z+2}{2}$ lie in the plane $x+3 y-\alpha z+\beta=0 .$ Then $(\alpha, \beta)$ equals (1) (5, – 15)             (2) (–5, 5)             (3) (6, –17)               (4) (–6, 7) [AIEEE-2009]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (4) Line $\frac{x-2}{3}=\frac{y-1}{-5}=\frac{z+2}{2} \ldots .(1)$ Plane $\mathrm{x}+3 \mathrm{y}-\alpha \mathrm{z}+\beta=0 \quad \ldots .(2)$ Point $(2,1,-2)$ put in ( 2) $2+3+2 \alpha+\beta=0 \Rightarrow 2 \alpha+\beta=-5$ $\mathrm{Now} \mathrm{a}_{1} \mathrm{a}_{2}+\mathrm{b}_{1} \mathrm{b}_{2}+\mathrm{c}_{1} \mathrm{c}_{2}=0$ $3-15-2 \alpha=0 \Rightarrow-12-2 \alpha=0 \Rightarrow \alpha=-6$ $-12+\beta=-5 \Rightarrow \beta=7$ $\therefore \alpha=-6, \beta=7$

Q. The projections of a vector on the three coordinate axis are 6, –3, 2 respectively. The direction cosines of the vector are :- (1) $\frac{6}{7}, \frac{-3}{7}, \frac{2}{7}$ (2) $\frac{-6}{7}, \frac{-3}{7}, \frac{2}{7}$ (3) 6, –3, 2 (4) $\frac{6}{5}, \frac{-3}{5}, \frac{2}{5}$ [AIEEE-2009]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (1) Q. Statement–1 : The point A(3,1,6) is the mirror image of the point B(1, 3, 4) in the plane x – y + z = 5. Statement–2 : The plane x – y + z = 5 bisects the line segment joining A(3, 1, 6) and B(1, 3, 4). (1) Statement–1 is true, Statement–2 is true; Statement–2 is a correct explanation for Statement– 1. (2) Statement–1 is true, Statement–2 is true ; Statement–2 is not a correct explanation for statement– 1. (3) Statement–1 is true,n Statement–2 is false. (4) Statement–1 is false, Statement–2 is true. [AIEEE-2010]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (2) Mirror image of $\mathrm{B}(1,3,4)$ in plane $\mathrm{x}-\mathrm{y}+\mathrm{z}=5$ $\frac{x-1}{1}=\frac{y-3}{-1}=\frac{z-4}{1}=-2 \frac{(1-3+4-5)}{1+1+1}=2$ $\Rightarrow x=3, y=1, z=6$ $\therefore$ mirror image of $\mathrm{B}(1,3,4)$ is $\mathrm{A}(3,1,6)$ statement-1 is correct statement-2 is true but it is not the correct explanation. because it is not neccessary that to bisect the line joining (1,3,4) and (3,1,6) plane is always perpendicular to line AB

Q. If the angle between the line $x=\frac{y-1}{2}=\frac{z-3}{\lambda}$ and the plane $x+2 y+3 z=4$ is $\cos ^{-1}(\sqrt{\frac{5}{14}})$, then $\lambda$ equals:- ( 1)$\frac{2}{5}$ ( 2)$\frac{5}{3}$ ( 3)$\frac{2}{3}$ ( 4)$\frac{3}{2}$ [AIEEE-2011]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (3) $\frac{x}{1}=\frac{y-1}{2}=\frac{z-3}{\lambda}$ equation of line equation of plane $x+2 y+3 z=4$ $\sin \theta=\frac{1+4+3 \lambda}{\sqrt{14} \sqrt{1+4}+\lambda^{2}}$ $\Rightarrow \lambda=\frac{2}{3}$

Q. Statement-1: The point $\mathrm{A}(1,0,7)$ is the mirror image of the point $\mathrm{B}(1,6,3)$ in the line: $\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}$ Statement-2: The line : $\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}$ bisects the line segment joining $A(1,0,7)$ and B(1, 6, 3). (1) Statement-1 is true, Statement-2 is false. (2) Statement-1 is false, Statement-2 is true (3) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1 (4) Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1. [AIEEE-2011]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (4) $1(1-1)+2(0-6)+3(7-3)$ $=0-12+12=0$ mid point $\mathrm{AB}(1,3,5)$ lies on $\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}$

Q. The distance of the point (1, –5, 9) from the plane x – y + z = 5 measured along a straight line x = y = z is : (1) $3 \sqrt{5}$ (2) $10 \sqrt{3}$ (3) $5 \sqrt{3}$ (4) $3 \sqrt{10}$ [AIEEE-2011]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (2)  Distance $\mathrm{PM}=\sqrt{100+100+100}=10 \sqrt{3}$

Q. An equation of a plane parallel to the plane x – 2y + 2z – 5 = 0 and at a unit distance from the origin is : (1) x – 2y + 2z + 5 = 0 (2) x – 2y + 2z – 3 = 0 (3) x – 2y + 2z + 1 = 0 (4) x – 2y + 2z – 1 = 0 [AIEEE-2012]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (2) Equation of plane parallel to $x-2 y+2 z-5=0$ is $x-2 y+2 z=k$ Distance of plane from origen $=1$ $\left|\frac{k}{\sqrt{9}}\right|=1$ $\mathrm{k}=\pm 3$ Equation of required plane is $x-2 y+2 z \pm 3=0$

Q. If the lines $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}$ and $\frac{x-3}{1}=\frac{y-k}{2}=\frac{z}{1}$ intersect, then $k$ is equal to : (1) 0 (2) – 1 ( 3)$\frac{2}{9}$ ( 4)$\frac{9}{2}$ [AIEEE-2012]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (4) $\left|\begin{array}{ccc}{3-1} & {\mathrm{K}+1} & {0-1} \\ {2} & {3} & {4} \\ {1} & {2} & {1}\end{array}\right|=0 \Rightarrow\left|\begin{array}{ccc}{2} & {\mathrm{K}+1} & {-1} \\ {2} & {3} & {4} \\ {1} & {2} & {1}\end{array}\right|=0$ $\Rightarrow 2 \mathrm{K}-9=0 \Rightarrow \mathrm{K}=\frac{9}{2}$

Q. Distance between two parallel planes 2x + y + 2z = 8 and 4x + 2y + 4z + 5 = 0 is :- ( 1)$\frac{3}{2}$ ( 2)$\frac{5}{2}$ (3) $\frac{7}{2}$ ( 4)$\frac{9}{2}$ [JEE-MAIN 2013]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (3) $4 x+2 y+4 z+5=0$ $4 x+2 y+4 z-16=0$ $\Rightarrow \quad d=\left|\frac{21}{\sqrt{36}}\right|=\frac{7}{2}$

Q. If the lines $\frac{x-2}{1}=\frac{y-3}{1}=\frac{z-4}{-k}$ and $\frac{x-1}{k}=\frac{y-4}{2}=\frac{z-5}{1}$ are coplanar, then $k$ can have : (1) any value (2) exactly one value (3) exactly two values (4) exactly three values. [JEE-MAIN 2013]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (3) $\Rightarrow(\bar{a}-\bar{b}) \cdot(\bar{c} \times \bar{d})=0$ $\Rightarrow\left|\begin{array}{ccc}{1} & {-1} & {-1} \\ {1} & {1} & {-k} \\ {k} & {2} & {1}\end{array}\right|=0$ $\Rightarrow \quad(1+2 k)+\left(1+k^{2}\right)-(2-k)=0$ $\Rightarrow \quad \mathrm{k}^{2}+3 \mathrm{k}=0<\begin{array}{c}{0} \\ {-3}\end{array}$

Q. A vector $\overrightarrow{\mathrm{n}}$ is inclined to x-axis at $45^{\circ},$ to $\mathrm{y}$ -axis at $60^{\circ}$ and at an acute angle to z-axis. If $\overrightarrow{\mathrm{n}}$ is a normal to a plane passing through the point $(\sqrt{2},-1,1),$ then the equation of the plane is : (1) $\sqrt{2} x-y-z=2$ (2) $\sqrt{2} x+y+z=2$ (3) $3 \sqrt{2} x-4 y-3 z=7$ (4) $4 \sqrt{2} x+7 y+z=2$ [JEE-MAIN Online 2013]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (2) Let $\alpha, \beta, \gamma$ v be direction cosine of vector $\vec{n}$ $\alpha^{2}+\beta^{2}+\gamma^{2}=1$ $\frac{1}{2}+\frac{1}{4}+\gamma^{2}=1$ $\gamma=\frac{1}{2} \quad\left\{-\frac{1}{2} \text { rejected }\right\}$ $\overline{\mathrm{n}}=\frac{\hat{\mathrm{i}}}{\sqrt{2}}+\frac{\hat{\mathrm{j}}}{2}+\frac{\hat{\mathrm{k}}}{2}=\sqrt{2 \hat{\mathrm{i}}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}$ $\overline{\mathrm{a}}=\sqrt{2} \hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}}$ $d=\bar{a} \cdot \bar{n}=2-1+1=2$ $\overline{\mathrm{r}} \cdot(\sqrt{2} \hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})=2$ $\sqrt{2} x+y+z=2$

Q. The acute angle between two lines such that the direction cosines $\ell, \mathrm{m}, \mathrm{n}$ of each of them satisfy the equations $\ell+\mathrm{m}+\mathrm{n}=0$ and $\ell^{2}+\mathrm{m}^{2}-\mathrm{n}^{2}=0$ is :- (1) $30^{\circ}$ (2) $45^{\circ}$ (3) $60^{\circ}$ (4) $15^{\circ}$ [JEE-MAIN Online 2013]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (3) $\begin{array}{rl}{1+\mathrm{m}+\mathrm{n}} & {=0 ; \ell^{2}+\mathrm{m}^{2}-\mathrm{n}^{2}=0} \\ {\mathrm{a} \ell=-(\mathrm{m}+\mathrm{n})} & {} \\ {(\mathrm{m}+\mathrm{n})^{2}+\mathrm{m}^{2}-\mathrm{n}^{2}} & {=0} \\ {(\mathrm{m}+\mathrm{n})[\mathrm{m}+\mathrm{n}+\mathrm{m}-\mathrm{n}]} & {=0} \\ {\mathrm{m}+\mathrm{n}=0} & {\mathrm{m}=0} \\ {\mathrm{m}=-\mathrm{n}}\end{array}$ Dr’s of line $1 \Rightarrow 0,-\mathrm{n}, \mathrm{n}$ or $0,-1,1$ Dr’s of line $2 \Rightarrow-\mathrm{n}, 0, \mathrm{n}$ or $-1,0,1$ $\cos \theta=\frac{1}{\sqrt{2} \sqrt{2}}$ $\theta=60^{\circ}$

Q. Let Q be the foot of perpendicular from the origin to the plane 4x – 3y + z + 13 = 0 and R be a point (–1, 1, –6) on the plane. Then length QR is : (1) $3 \sqrt{\frac{7}{2}}$ (2) $\sqrt{14}$ (3) $\sqrt{\frac{19}{2}}$ (4) $\frac{3}{\sqrt{2}}$ [JEE-MAIN Online 2013]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (1) Q. If the projections of a line segment on thex, y and z-axes in 3-dimensional space are 2, 3 and 6 respectively, then the length ofthe line segment is : (1) 7             (2) 9           (3) 12               (4) 6 [JEE-MAIN Online 2013]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (1) i.e. $[\mathrm{OM}=2, \mathrm{ON}=3, \mathrm{OQ}=6]$ $\therefore \mathrm{P}(2,3,6)$ \begin{aligned} \therefore \mathrm{OP} &=\sqrt{2^{2}+3^{2}+6^{2}} \\ &=\sqrt{49}=7 \end{aligned}

Q. If two lines $L_{1}$ and $L_{2}$ in space, are defined by $\mathrm{L}_{1}=\{\mathrm{x}=\sqrt{\lambda} \mathrm{y}+(\sqrt{\lambda}-1)$ $\mathrm{z}=(\sqrt{\lambda}-1) \mathrm{y}+\sqrt{\lambda}\}$ and $\mathrm{L}_{2}=\{\mathrm{x}=\sqrt{\mu} \mathrm{y}+(1-\sqrt{\mu})$ $\mathrm{z}=(1-\sqrt{\mu}) \mathrm{y}+\sqrt{\mu}\}$ then $\mathrm{L}_{1}$ is perpendicular to $\mathrm{L}_{2},$ for all non-negative reals $\lambda$ and $\mu,$ such that : (1) $\lambda=\mu$ (2) $\lambda \neq \mu$ (3) $\sqrt{\lambda}+\sqrt{\mu}=1$ (4) $\lambda+\mu=0$ [JEE-MAIN Online 2013]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (1,4) $\mathrm{L}_{1}=\{\mathrm{x}=\sqrt{\lambda} \mathrm{y}+(\sqrt{\lambda}-1), \mathrm{z}=(\sqrt{\lambda}-1) \mathrm{y}+\sqrt{\lambda}\}$ $\therefore \mathrm{L}_{1}: \frac{\mathrm{x}-(\sqrt{\lambda}-1)}{\sqrt{\lambda}}=\frac{\mathrm{y}-0}{1}=\frac{\mathrm{Z}-\sqrt{\lambda}}{(\sqrt{\lambda}-1)} \quad \& \mathrm{L}_{2}:\{\mathrm{x}=\sqrt{\mu} \mathrm{y}+(1-\sqrt{\mu}), \mathrm{z}=(1-\sqrt{\mu}) \mathrm{y}+\sqrt{\mu}\}$ $\therefore \mathrm{L}_{2}: \frac{\mathrm{x}-(1-\sqrt{\mu})}{\sqrt{\mu}}=\frac{\mathrm{y}-0}{1}=\frac{\mathrm{z}-\sqrt{\mu}}{(1-\sqrt{\mu})}$ $\therefore \mathrm{L}_{1} \perp^{r} \mathrm{L}_{2} \Rightarrow(\sqrt{\lambda})(\sqrt{\mu})+1+(\sqrt{\lambda}-1)(1-\sqrt{\mu})=0$ $\Rightarrow \sqrt{\lambda} \sqrt{\mu}+1-\sqrt{\lambda} \sqrt{\mu}+\sqrt{\lambda}+\sqrt{\mu}-1=0$ $\Rightarrow \sqrt{\lambda}+\sqrt{\mu}=0 \Rightarrow \lambda=\mu=0$

Q. The equation of a plane through the line of intersection of the planes x + 2y = 3, y – 2z+ 1 = 0, and perpendicular to the first plane is : (1) 2x – y + 7z = 11 (2) 2x – y + 10 z = 11 (3) 2x – y – 9z = 10 (4) 2x – y – 10z = 9 [JEE-MAIN Online 2013]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (2) $(x+2 y-3)+\lambda(y-2 z+1)=0$ $(1)(1)+(2+\lambda) 2+(-2 \lambda) \times 0=0$ $1+4+2 \lambda=0$ $\lambda=-\frac{5}{2}$ $(x+2 y-3)-\frac{5}{2}(y-2 z+1)=0$ $2 \mathrm{x}-\mathrm{y}+10 \mathrm{z}-11=0$

Q. Let ABC be a triangle with vertices at points $\mathrm{A}(2,3,5), \mathrm{B}(-1,3,2)$ and $\mathrm{C}(\lambda, 5, \mu)$ in three dimensional space. If the median through A is equally inclined with the axes, then $(\lambda, \mu$.) is equal to : (1) (10, 7)                  (2) (7.5)               (3) (7, 10)                    (4) (5,7) [JEE-MAIN Online 2013]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (3)   Q. The angle between the lines whose direction cosines satisfy the equations $\ell+\mathrm{m}+\mathrm{n}=0$ and $\ell^{2}=\mathrm{m}^{2}+\mathrm{n}^{2}$ is ( 1)$\frac{\pi}{3}$ ( 2)$\frac{\pi}{4}$ ( 3)$\frac{\pi}{6}$ (4) $\frac{\pi}{2}$ [JEE-MAIN 2014]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (1) Q. The image of the line $\frac{x-1}{3}=\frac{y-3}{1}=\frac{z-4}{-5}$ in the plane $2 x-y+z+3=0$ is the line: (1) $\frac{x+3}{3}=\frac{y-5}{1}=\frac{z-2}{-5}$ (2) $\frac{x+3}{-3}=\frac{y-5}{-1}=\frac{z+2}{5}$ (3) $\frac{x-3}{3}=\frac{y+5}{1}=\frac{z-2}{-5}$ (4) $\frac{x-3}{-3}=\frac{y+5}{-1}=\frac{z-2}{5}$ [JEE-MAIN 2014]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (1) $\mathrm{L}: \frac{\mathrm{x}-1}{3}=\frac{\mathrm{y}-3}{1}=\frac{\mathrm{z}-4}{-5}$ $P: 2 x-y+z+3=0$ It can be observed given line is parallel to given plane. Image of $(1,3,4)$ in given plane can be calculated as $\frac{x-1}{2}=\frac{y-3}{-1}=\frac{z-4}{1}=\frac{-2(2 \times 1-3+4+3)}{6}=-2$ $\Rightarrow x=-3 ; y=5 ; z=2$ Q. The equation of the plane containing the line 2x – 5y + z = 3 ; x + y + 4z = 5, and parallel to the plane, x + 3y + 6z = 1, is : (1)x + 3y + 6z = 7 (2) 2x + 6y + 12z = – 13 (3) 2x + 6y + 12z = 13 (4) x + 3y + 6z = – 7 [JEE(Main)-2015]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (1) Let equation of plane parallel to $\mathrm{x}+3 \mathrm{y}+6 \mathrm{z}=1$ is $\mathrm{x}+3 \mathrm{y}+6 \mathrm{z}=\lambda$ point on line of intersection is $(4,1,0),$ it also lie on plane $x+3 y+6 z=\lambda$ so required plane is $x+3 y+6 z=7$

Q. The distance of the point (1, 0, 2) from the point of intersection of the line $\frac{\mathrm{x}-2}{3}=\frac{\mathrm{y}+1}{4}=\frac{\mathrm{z}-2}{12}$ and the plane $\mathrm{x}-\mathrm{y}+\mathrm{z}=16,$ is : (1) $3 \sqrt{21}$ (2) 13 (3) $2 \sqrt{14}$ (4) 8 [JEE(Main)-2015]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (2) Q. The distance of the point (1, –5, 9) from the plane x – y + z = 5 measured along the line x = y = z is : (1) $\frac{20}{3}$ (2) $3 \sqrt{10}$ (3) $10 \sqrt{3}$ ( 4)$\frac{10}{\sqrt{3}}$ [JEE(Main)-2016]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (3) Equation of line parallel to $\mathrm{x}=\mathrm{y}=\mathrm{z}$ through $(1,-5,9)$ is $\frac{\mathrm{x}-1}{1}=\frac{\mathrm{y}+5}{1}=\frac{\mathrm{z}-9}{1}=\lambda$ If $\mathrm{P}(\lambda+1, \lambda-5, \lambda+9)$ be point of intesection of line and plane. $\Rightarrow$ Required distance $=10 \sqrt{3}$

Q. If the line, $\frac{x-3}{2}=\frac{y+2}{-1}=\frac{z+4}{3}$ lies in the plane, $1 x+m y-z=9,$ then $1^{2}+m^{2}$ is equal to :- (1) 2               (2) 26              (3) 18                  (4) 5 [JEE(Main)-2016]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (1) Given line $\frac{x-3}{2}=\frac{y+2}{-1}=\frac{z+4}{3}$ and Given plane is $\ell \mathrm{x}+\mathrm{my}-\mathrm{z}=9$ Now, it is given that line lies on plane $\therefore 2 \ell-\mathrm{m}-3=0 \Rightarrow 2 \ell-\mathrm{m}=3$ Also, $(3,-2,-4)$ lies on plane $3 \ell-2 m=5$ Solving ( 1) and $(2),$ we get $\ell=1, \mathrm{m}=-1$ $\therefore \ell^{2}+\mathrm{m}^{2}=2$

Q. If the image of the point P(1, –2, 3) in the plane, 2x + 3y – 4z + 22 = 0 measured parallel to line, $\frac{\mathrm{x}}{1}=\frac{\mathrm{y}}{4}=\frac{\mathrm{z}}{5}$ is $\mathrm{Q},$ then $\mathrm{PQ}$ is equal to :- (1) $6 \sqrt{5}$ (2) $3 \sqrt{5}$ (3) $2 \sqrt{42}$ (4) $\sqrt{42}$ [JEE(Main)-2017]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (3) Line $\mathrm{PQ} ; \frac{\mathrm{x}-1}{1}=\frac{\mathrm{y}+2}{4}=\frac{\mathrm{z}-3}{5}$ Let $\mathrm{F}(\lambda+1,4 \lambda-2,5 \lambda+3)$ F lies on the plane $2(\lambda+1)+3(4 \lambda-2)-4(5 \lambda+3)+22=0$ $\Rightarrow-6 \lambda+6=0 \Rightarrow \lambda=1$ $\mathrm{F}(2,2,8)$ $\mathrm{PQ}=2 \quad \mathrm{PF}=2 \sqrt{42}$

Q. The distantce of the point (1, 3, –7) from the plane passing through the point (1, 1, –1), havingnormal perpendicular to both the lines $\frac{x-1}{1}=\frac{y+2}{-2}=\frac{z-4}{3}$ and $\frac{x-2}{2}=\frac{y+1}{-1}=\frac{z+7}{-1},$ is : (1) $\frac{10}{\sqrt{74}}$ (2) $\frac{20}{\sqrt{74}}$ (3) $\frac{10}{\sqrt{83}}$ (4) $\frac{5}{\sqrt{83}}$ [JEE(Main)-2017]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (1) Normal vector $\left|\begin{array}{ccc}{\hat{\mathrm{i}}} & {\hat{\mathrm{j}}} & {\hat{\mathrm{k}}} \\ {1} & {-2} & {3} \\ {2} & {-1} & {-1}\end{array}\right|=5 \hat{\mathrm{i}}+7 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}$ So plane is 5(x – 1) + 7(y + 1) + 3(z + 1) = 0 $\Rightarrow 5 x+7 y+3 z+5=0$ Distance $\frac{5+21-21+5}{\sqrt{25+49+9}}=\frac{10}{\sqrt{83}}$

Q. The length of the projection of the line segment joining the points (5, –1, 4) and (4, –1, 3) on the plane, x + y + z = 7 is : ( 1)$\frac{2}{3}$ (2) $\frac{1}{3}$ (3) $\sqrt{\frac{2}{3}}$ (4) $\frac{2}{\sqrt{3}}$ [JEE(Main)-2018]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (3)  Q. If $\mathrm{L}_{1}$ is the line of intersection of the planes $2 \mathrm{x}-2 \mathrm{y}+3 \mathrm{z}-2=0, \mathrm{x}-\mathrm{y}+\mathrm{z}+1=0$ and $\mathrm{L}_{2}$ is the line of intersection of the planes $\mathrm{x}+2 \mathrm{y}-\mathrm{z}-3=0,3 \mathrm{x}-\mathrm{y}+2 \mathrm{z}-1=0,$ then the distance of the origin from the plane, containing the lines $L_{1}$ and $L_{2}$ is $z$ (1) $\frac{1}{3 \sqrt{2}}$ (2) $\frac{1}{2 \sqrt{2}}$ (3) $\frac{1}{\sqrt{2}}$ ( 4)$\frac{1}{4 \sqrt{2}}$ [JEE(Main)-2018]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (1) Plane passes through line of intersectuion of first two planes is $(2 x-2 y+3 z-2)+\lambda(x-y+z+1)=0$ $\mathrm{x}(\lambda+2)-\mathrm{y}(2+\lambda)+\mathrm{z}(\lambda+3)+(\lambda-2)=0 \ldots \ldots(1)$ is having infinite number of solution with x + 2y – z – 3 = 0 and 3x – y + 2z – 1 = 0 then $\left|\begin{array}{ccc}{(\lambda+2)} & {-(\lambda+2)} & {(\lambda+3)} \\ {1} & {2} & {-1} \\ {3} & {-1} & {2}\end{array}\right|=0$ Solving $\lambda=5$ $7 x-7 y+8 z+3=0$ perpendicular distance from $(0,0,0)$ is $\frac{3}{\sqrt{162}}=\frac{1}{3 \sqrt{2}}$

• August 19, 2021 at 11:49 am

Third question from last is wrong the point 1,-1,-1 not 1,1,-1

0
• June 10, 2021 at 4:47 pm

Hi,im studying 12th standard i jav attemted 2mains but my result is below 50percentile and now this is june i dont start my preparation what to do now

0
• July 8, 2021 at 7:55 pm

Now you can’t do anything just prepare important chapters from which at least one question comes

1
• March 8, 2021 at 2:32 pm

nice

6
• February 28, 2021 at 3:00 pm

March 14plz add some extra question s regarding to new pattern

12
• February 21, 2021 at 1:53 pm

Plz add Some more recent questions plz

6
• February 4, 2021 at 10:39 pm

15
• February 4, 2021 at 4:04 pm

Bahut achhe, bharat ko aur padhao

43
• December 13, 2020 at 10:06 pm

thanks

19
• October 25, 2020 at 8:59 pm

thanks guys u were a lot help….

3
• October 10, 2020 at 5:28 pm

Bro.provide latest questions.

2
• October 28, 2020 at 5:15 pm

0
• September 18, 2020 at 9:14 pm

Plese imprvo and update your application and

0
• September 2, 2020 at 9:26 pm

Really very helpful tqqq &update ur app like 2020 Jan shifts & sept shifts

0
• September 2, 2020 at 8:36 am

Very helpful covered all the models in planes

0
• July 9, 2021 at 11:21 am

Yes

15
• August 30, 2020 at 6:54 am

0
• February 17, 2021 at 12:21 pm

These are enough for your face

0
• August 24, 2020 at 8:00 am

1
• August 24, 2020 at 7:45 am

very interestig

0
• August 23, 2020 at 7:23 pm

Like this all topics are provided by the site… very much useful💜

0
• August 17, 2020 at 3:07 pm

All the questions were very useful…nice collection….thanks a lot

0
• December 24, 2020 at 9:47 pm

AMAZING! ZING! ZING!

0
• July 23, 2020 at 2:05 pm

Please update with 2019 and 2020 questions also

5
• July 13, 2020 at 5:55 pm