JEE Advanced Previous Year Questions of Physics with Solutions are available at eSaral. Practicing JEE Advanced Previous Year Papers Questions of Physics will help the JEE aspirants in realizing the question pattern as well as help in analyzing weak & strong areas.

Get detailed Class 11th & 12th Physics Notes to prepare for Boards as well as competitive exams like IIT JEE, NEET etc.

eSaral helps the students in clearing and understanding each topic in a better way. eSaral is providing complete chapter-wise notes of Class 11th and 12th both for all subjects.

**Click Here for** **JEE main Previous Year Topic Wise Questions of Physics with Solutions **

**Download eSaral app for free study material and video tutorials.**

*Simulator*

**Previous Years JEE Advanced Questions**

**[IIT-JEE-2009]**

**Sol.**4m/s

(A) 4 (B) 3 (C) 2 (D) 1

**[IIT-JEE-2009]**

**Sol.**(C)

Particle with velocity ‘v’ covers and angle of $120^{\circ}$ and after collision its velocity become ‘2v’. It will cover angle of $$240^{\circ}$$

$(\mathrm{A}) \frac{\mathrm{a}}{10}$

(B) $\frac{\mathrm{a}}{8}$

(C) $\frac{\mathrm{a}}{12}$

(D) $\frac{\mathrm{a}}{3}$

**[IIT-JEE-2009] **

**Sol.**(A)

(A) Total momentum of the system is 3 kg m/s.

(B) Momentum of 5 kg mass after collision is 4 kg m/s.

(C) Kinetic energy of the centre of mass is 0.75 J.

(D) Total kinetic energy of the system is 4 J.

**[IIT-JEE 2010]**

**Sol.**(A,C)

Conservation of linear momentum

(1) u = – (1) 2 + (5) v 5v –2 = u … (i)

By definition of ‘e’ $1=\frac{v+2}{u} \Rightarrow v+2=u$… (ii)

By solving above equations $\mathrm{v}=1 \mathrm{ms}^{-1}$ and $\mathrm{u}=3 \mathrm{ms}^{-1}$

For $(\mathrm{A}):$ Total momentum of system $=1 \times \mathrm{u}=3 \mathrm{kg} \mathrm{ms}^{-1}$

For (B) : Momentum of 5 kg after collision $=5(1)=5 \mathrm{kg} \mathrm{ms}^{-1}$

For $(\mathrm{C}): \mathrm{K}_{\mathrm{cm}}=\frac{1}{2}(1+5)\left(\frac{1 \times 3+0}{1+5}\right)=0.75 \mathrm{J}$

For (D) : Total kinetic energy of the system $=\frac{1}{2}(1)(3)^{2}=4.5 \mathrm{J}$

(A) 4.50 J (B) 7.50 J (C) 5.06 J (D) 14.06 J

**[IIT-JEE-2010]**

**Sol.**(C)

Area in F–t Curve = change in momentum

$\mathrm{P}=\frac{1}{2}(4 \times 3)-\frac{1}{2}(1.5)(2)=\frac{9}{2}$

$\mathrm{V}=\frac{9}{4} \mathrm{m} / \mathrm{s}$

$\mathrm{k.E.}=\frac{1}{2} \times 2 \times\left(\frac{9}{4}\right)^{2} \approx 5.06 \mathrm{J}$

**[IIT-JEE 2011] **

(A) $250 \mathrm{m} / \mathrm{s}$

(B) $250 \sqrt{2} \mathrm{m} / \mathrm{s}$

(C) $400 \mathrm{m} / \mathrm{s}$

(D) $500 \mathrm{m} / \mathrm{s}$

**Sol.**(D)

0.01 V = 0.2 u + 0.01 × 5 u

Time of flight $\mathrm{t}=1$ s; Range for ball $=\mathrm{u} \times \mathrm{t} \Rightarrow 20=\mathrm{u} \times 1 \Rightarrow \mathrm{u}=20 \mathrm{m} / \mathrm{s}$

$\Rightarrow \mathrm{V}=500 \mathrm{m} / \mathrm{s}$

(A) $\theta=45^{\circ}$

(B) $\theta>45^{\circ}$ and a frictional force acts on the block towards P

(C) $\theta>45^{\circ}$ and a frictional force acts on the block towards Q

(D) $\theta>45^{\circ}$ and a frictional force acts on the block towards Q

**[IIT-JEE 2012]**

**Sol.**(A,C)

(1) If $\sin \theta=\cos \theta \Rightarrow \theta=45^{\circ} \Rightarrow$ no friction will act and the block will remain at rest.

(2) If $\sin \theta>\cos \theta \Rightarrow \theta>45^{\circ} \Rightarrow$ friction will act towards $\mathrm{Q}$

(3) If $\sin \theta<\cos \theta \Rightarrow \theta<45^{\circ} \Rightarrow$ friction will act towards $\mathrm{P}$

to complete a full circle in the vertical plane, the ratio $\frac{\ell_{1}}{\ell_{2}}$ is.

**[JEE Advanced-2013]**

**Sol.**5

$\sqrt{9 \ell_{1}}=\sqrt{5 \mathrm{g} \ell_{2}} \Rightarrow \frac{\ell_{1}}{\ell_{2}}=5$

**[JEE Advanced-2014]**

**Sol.**(B)

During fall, v = 0 + gt

$\mathrm{KE}=\frac{1}{2} \mathrm{mv}^{2}=\frac{1}{2} \mathrm{m}(\mathrm{gt})^{2}$

$\mathrm{KE} \propto \mathrm{t}^{2},$ so graph is upward parabola.

During collision, KE will decrease in compression and increase in reformation.

Finally, during going up KE will decrease.

*co-ordinate system fixed to the table*. A point mass m is released from rest at the topmost point of the path as shown and it slides down. When the mass loses contact with the block, its position is x and the velocity is v. At that instant, which of the following options is/are

**correct**?

(A) The x component of displacement of the centre of mass of the block M is : $-\frac{\mathrm{mR}}{\mathrm{M}+\mathrm{m}}$

(B) The position of the point mass is : $\mathrm{x}=-\sqrt{2} \frac{\mathrm{mR}}{\mathrm{M}+\mathrm{m}}$

(C) The velocity of the point mass m is : $\mathrm{v}=\sqrt{\frac{2 \mathrm{g} \mathrm{R}}{1+\frac{\mathrm{m}}{\mathrm{M}}}}$

(D) The velocity of the block M is : $\mathrm{V}=-\frac{\mathrm{m}}{\mathrm{M}} \sqrt{2 \mathrm{gR}}$

**[JEE Advanced-2017]**

**Sol.**(A,C)

$\mathrm{M}_{\mathrm{s}} \Delta \overline{\mathrm{x}}_{\mathrm{cm}}=\mathrm{m}_{1} \Delta \overline{\mathrm{x}}+\mathrm{m}_{2} \Delta \overline{\mathrm{x}}_{2}$

$0=\mathrm{m}(+\mathrm{R}+\overline{\mathrm{x}})+\mathrm{m} \overline{\mathrm{x}}$

$\overline{\mathrm{x}}=\frac{-\mathrm{mR}}{\mathrm{M}+\mathrm{m}}$

(A) ans

$0=\mathrm{m} \overline{\mathrm{v}}_{1}+\mathrm{M} \overline{\mathrm{v}}_{2}$

$\overline{\mathrm{v}}_{2}=-\frac{\mathrm{m} \overline{\mathrm{v}}_{1}}{\mathrm{M}}$

$\operatorname{mg} \mathrm{R}=\frac{1}{2} \mathrm{mv}_{1}^{2}+\frac{1}{2} \mathrm{Mv}_{2}^{2}$

$\mathrm{mgR}=\frac{1}{2} \mathrm{mv}_{1}^{2}+\frac{1}{2} \mathrm{M}\left(\frac{\mathrm{mv}_{1}}{\mathrm{M}}\right)^{2}$

$\operatorname{mg} \mathrm{R}=\frac{1}{2} \mathrm{mv}_{1}^{2}\left(1+\frac{\mathrm{m}}{\mathrm{M}}\right)$

$\sqrt{\frac{2 \mathrm{gR}}{\left(1+\frac{\mathrm{m}}{\mathrm{M}}\right)}}=\mathrm{v}_{1}$

(A) $\Delta=\operatorname{hsin}^{2}\left(\frac{\pi}{\mathrm{n}}\right)$

(B) $\Delta=\mathrm{h} \sin \left(\frac{2 \pi}{\mathrm{n}}\right)$

(C) $\Delta=\mathrm{h}\left(\frac{1}{\cos \left(\frac{\pi}{\mathrm{n}}\right)}-1\right)$

(D) $\Delta=h \tan ^{2}\left(\frac{\pi}{2 n}\right)$

**[JEE Advanced-2017]**

**Sol.**(C)

OA = h

$\mathrm{OB}=\frac{\mathrm{h}}{\cos \frac{\pi}{\mathrm{n}}}$

Initial height of COM = h

Final height of $\mathrm{COM}=\frac{\mathrm{h}}{\cos \left(\frac{\pi}{\mathrm{n}}\right)}$

** [JEE Advanced-2018]**

**Sol.**(2.09 M)

$\mathrm{T}=2 \pi \sqrt{\frac{\mathrm{m}}{\mathrm{k}}}=2 \pi \mathrm{sec}$

block returns to original position in $\frac{\mathrm{T}}{2}=\pi \mathrm{sec}$

$\mathrm{d}=\frac{2}{3}(\pi)=\frac{2}{3}(3.14)=2.0933 \mathrm{m}$

d = 2.09 m

**[JEE Advanced-2018]**

**Sol.**6.3

$\mathbf{V}=\mathbf{V}_{0} \mathbf{e}^{-\mathbf{t} / \tau}$

$\mathrm{v}_{0}=\frac{\mathrm{J}}{\mathrm{m}}=2.5 \mathrm{m} / \mathrm{s}$

$\mathbf{V}=\mathbf{V}_{0} \mathbf{e}^{-\mathbf{t} / \tau}$

$\frac{\mathrm{dx}}{\mathrm{dt}}=\mathrm{v}_{0} \mathrm{e}^{-\mathrm{t} / \tau}$

$\int_{0}^{\mathrm{x}} \mathrm{dx}=\mathrm{v}_{0} \int_{0}^{\mathrm{r}} \mathrm{e}^{-t / \tau} \mathrm{dt} \quad \int \mathrm{e}^{-\mathrm{x}} \mathrm{d} \mathrm{x}=\frac{\mathrm{e}^{-\mathrm{x}}}{-1}$

thank you very much it was very helpful and very good source to get practiced

thank you very much it was very helpful

thank you very much it was very helpful