Q. $\int_{0}^{\pi}[\cot x] d x,$ where $[.]$ denotes the greatest integer function, is equal to –
(1) –1 $
(2)-\frac{\pi}{2}$
(3) $\frac{\pi}{2}$
(4) 1

**[AIEEE-2009]**
Q. Let p(x) be a function defined on R such that p'(x) = p'(1 – x), for all x $\in$0, 1], p(0) = 1 and p(1) = 41. Then $\int_{0}^{1}$ p(x) dx equals :-
(1) $\sqrt{41}$
(2) 21
(3) 41
(4) 42

**[AIEEE-2010]**
Q. The value of $\int_{0}^{1} \frac{8 \log (1+x)}{1+x^{2}} d x$ is :-
(1) $\frac{\pi}{2} \log 2$
(2) $\log 2$
(3) $\pi \log 2$
(4) $\frac{\pi}{8} \log 2$

**[AIEEE-2011]**
Q. Let [.] denote the greatest integet function then the value of $\int_{0}^{1.5} \mathrm{x}\left[\mathrm{x}^{2}\right] \mathrm{dx}$ is :-
( 1)$\frac{5}{4}$ (2) 0 (3) $\frac{3}{2}$ (4) $\frac{3}{4}$

**[AIEEE-2011]**
Q. If $\mathrm{g}(\mathrm{x})=\int_{0}^{\mathrm{x}} \cos 4 \mathrm{t} \mathrm{dt},$ then $\mathrm{g}(\mathrm{x}+\pi)$ equals :
(1) $\mathrm{g}(\mathrm{X}) \cdot \mathrm{g}(\pi)$
(2) $\frac{\mathrm{g}(\mathrm{x})}{\mathrm{g}(\pi)}$
(3) $\mathrm{g}(\mathrm{x})+\mathrm{g}(\pi)$
(4) $\mathrm{g}(\mathrm{x})-\mathrm{g}(\pi)$

**[AIEEE-2012]****Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...**

**Sol.**(3,4)

Q.

**Statement-I :**The value of the integral $\int_{\pi / 6}^{\pi / 3} \frac{\mathrm{dx}}{1+\sqrt{\tan \mathrm{x}}}$ is equal to $\frac{\pi}{6}$**Statement-II**: $\int_{a}^{b} f(x) d x-\int_{a}^{b} f(a+b-x) d x$ (1) Statement-I is true, Statement-II is true; Statement-II is a**correct**explanation for Statement- I. (2) Statement-I is true, Statement-II is true; Statement-II is**not**a correct explanation for Statement-I. (3) Statement-I is true, Statement-II is false. (4) Statement-I is false, Statement-II is true.**[JEE-MAIN-2013]**
Q. The integral $\int_{0}^{\pi} \sqrt{1+4 \sin ^{2} \frac{x}{2}-4 \sin \frac{x}{2}} d x$ equals :
(1) $\pi-4$
(2) $\frac{2 \pi}{3}-4-4 \sqrt{3}$
(3) $4 \sqrt{3}-4$
(4) $4 \sqrt{3}-4-\frac{\pi}{3}$

**[JEE-MAIN-2014]**
Q. The integral $\int_{2}^{4} \frac{\log x^{2}}{\log x^{2}+\log \left(36-12 x+x^{2}\right)} d x$ is equal to :
(1) 1 (2) 6 (3) 2 (4) 4

**[JEE-MAIN-2015]**
Q. The integral $\int_{\frac{\pi}{4}}^{\frac{3 \pi}{4}} \frac{\mathrm{dx}}{1+\cos x}$ is equal to :-
(1) –1 (2) –2 (3) 2 (4) 4

**[JEE-MAIN-2017]**
Q. The value of $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin ^{2} x}{1+2^{x}} d x$ is :
( 1)$\frac{\pi}{2}$
(2) $4 \pi$
(3) $\frac{\pi}{4}$
(4) $\frac{\pi}{8}$

**[JEE-MAIN-2018]**
these questions are not enough for practice please increase the number of questions

If there will be more questions

Than it will be much better

So increase the number of questions

😁😁🤘

Thanks to eSaral

Want more problems

sir can you put some latest years bits

IT IS USE FULL

it is very usefull

\

It is very much useful.. Thank you

Monke

Superb

Thanks

superb

An excellent work done by saral…it helped me alot…

Nice

Questions are good for revision