Get Dream IIT in Drop Year | Up to 70% OFF | Limited Seats

JEE Advanced Chemistry Syllabus

JEE Advanced Chemistry Syllabus

JEE Advanced is the second phase of JEE and is conducted by one of the IITs on rotational basis every year to facilitate admissions into one of the 23 IITs including ISM Dhanbad. As it is one of the toughest competitive exams in the world it is obvious that its preparation demands vigorous study.

It is very crucial to know about the syllabus before starting your preparations for JEE. The purpose of this separate article on JEE Advanced Chemistry Syllabus is to let the student know about the content to be studied. Knowing the syllabus beforehand will help in better understanding of the topics relevant to JEE Advanced Exam.

In Chemistry, all the compositions of chemical reactions, the chain reactions, quality of questions, mechanism are almost same. Many a times similar types of questions have been asked in JEE Advanced Exam, particularly in this subject by just fluctuating their level of difficulty. In comparison to Physics and Mathematics, Chemistry is relatively an easier section to score. Strong fundamentals of the subject makes it easy for the candidates to score well in the JEE Advanced Exam.

 

Here is the detailed JEE Advanced Chemistry Syllabus:

PHYSICAL CHEMISTRY

1. Basic Concepts

  • Concept of atoms and molecules.
  • Dalton’s atomic theory.
  • Mole concept.
  • Chemical formulae.
  • Balanced chemical equations.
  • Calculations (based on mole concept) involving common oxidation-reduction, neutralisation, and displacement reactions.
  • Concentration in terms of mole fraction, molarity, molality and normality.

2. Gaseous and liquid states

  • Absolute scale of temperature, ideal gas equation.
  • Deviation from ideality, van der Waals equation.
  • Kinetic theory of gases, average, root mean square and most probable velocities and their relation with temperature.
  • Law of partial pressures.
  • Vapour pressure.
  • Diffusion of gases.

3. Atomic structure and chemical bonding

  • Bohr model, spectrum of hydrogen atom, quantum numbers.
  • Wave-particle duality, de Broglie hypothesis.
  • Uncertainty principle.
  • Qualitative quantum mechanical picture of hydrogen atom, shapes of s, p and d orbitals.
  • Electronic configurations of elements (up to atomic number 36); Aufbau principle.
  • Pauli’s exclusion principle and Hund’s rule.
  • Orbital overlap and covalent bond; Hybridisation involving s, p and d orbitals only.
  • Orbital energy diagrams for homonuclear diatomic species.
  • Hydrogen bond.
  • Polarity in molecules, dipole moment (qualitative aspects only).
  • VSEPR model and shapes of molecules (linear, angular, triangular, square planar, pyramidal, square pyramidal, trigonal bipyramidal, tetrahedral and octahedral).

4. Energetics

  • First law of thermodynamics.
  • Internal energy, work and heat, pressure-volume work.
  • Enthalpy, Hess’s law.
  • Heat of reaction, fusion and vapourization.
  • Second law of thermodynamics.
  • Entropy.
  • Free energy.
  • Criterion of spontaneity.

5. Chemical equilibrium

  • Law of mass action.
  • Equilibrium constant, Le Chatelier’s principle (effect of concentration, temperature and pressure).
  • Significance of ΔG and ΔG0 in chemical equilibrium.
  • Solubility product, common ion effect, pH and buffer solutions.
  • Acids and bases (Bronsted and Lewis concepts).
  • Hydrolysis of salts.

6. Electrochemistry

  • Electrochemical cells and cell reactions.
  • Standard electrode potentials.
  • Nernst equation and its relation to ΔG.
  • Electrochemical series, emf of galvanic cells.
  • Faraday’s laws of electrolysis.
  • Electrolytic conductance, specific, equivalent and molar conductivity, Kohlrausch’s law.
  • Concentration cells.

7. Chemical Kinetics

  • Rates of chemical reactions; Order of reactions.
  • Rate constant.
  • First order reactions.
  • Temperature dependence of rate constant (Arrhenius equation).

8. Solid state

  • Classification of solids, crystalline state, seven crystal systems (cell parameters a, b, c, α, β, γ), close packed structure of solids (cubic), packing in fcc, bcc and hcp lattices.
  • Nearest neighbours, ionic radii, simple ionic compounds, point defects.

9. Solutions

  • Raoult’s law.
  • Molecular weight determination from lowering of vapour pressure, elevation of boiling point and depression of freezing point.

10. Surface chemistry

  • Elementary concepts of adsorption (excluding adsorption isotherms).
  • Colloids: types, methods of preparation and general properties.
  • Elementary ideas of emulsions, surfactants and micelles (only definitions and examples).

11. Nuclear Chemistry

  • Radioactivity: isotopes and isobars; Properties of α, β and γ rays.
  • Kinetics of radioactive decay (decay series excluded), carbon dating.
  • Stability of nuclei with respect to proton-neutron ratio.
  • Brief discussion on fission and fusion reactions.

INORGANIC CHEMISTRY

12. Isolation/preparation and properties of the following non-metals

  • Boron, silicon, nitrogen, phosphorus, oxygen, sulphur and halogens.
  • Properties of allotropes of carbon (only diamond and graphite), phosphorus and sulphur.

13. Preparation and properties of the following compounds

  • Oxides, peroxides, hydroxides, carbonates, bicarbonates, chlorides and sulphates of sodium, potassium, magnesium and calcium.
  • Boron: diborane, boric acid and borax.
  • Aluminium: alumina, aluminium chloride and alums.
  • Carbon: oxides and oxyacid (carbonic acid).
  • Silicon: silicones, silicates and silicon carbide.
  • Nitrogen: oxides, oxyacids and ammonia.
  • Phosphorus: oxides, oxyacids (phosphorus acid, phosphoric acid) and phosphine.
  • Oxygen: ozone and hydrogen peroxide.
  • Sulphur: hydrogen sulphide, oxides, sulphurous acid, sulphuric acid and sodium thiosulphate.
  • Halogens: hydrohalic acids, oxides and oxyacids of chlorine, bleaching powder.
  • Xenon fluorides.

14. Transition elements (3d series)

  • Definition, general characteristics, oxidation states and their stabilities, colour (excluding the details of electronic transitions) and calculation of spin-only magnetic moment.
  • Coordination compounds: nomenclature of mononuclear coordination compounds, cis-trans and ionisation isomerisms, hybridization and geometries of mononuclear coordination compounds (linear, tetrahedral, square planar and octahedral).

15. Preparation and properties of the following compounds

  • Oxides and chlorides of tin and lead.
  • Oxides, chlorides and sulphates of Fe2+, Cu2+ and Zn2+.
  • Potassium permanganate, potassium dichromate, silver oxide, silver nitrate, silver thiosulphate.

16. Ores and minerals

  • Commonly occurring ores and minerals of iron, copper, tin, lead, magnesium, aluminium, zinc and silver.

17. Extractive metallurgy

  • Chemical principles and reactions only (industrial details excluded).
  • Carbon reduction method (iron and tin).
  • Self-reduction method (copper and lead).
  • Electrolytic reduction method (magnesium and aluminium).
  • Cyanide process (silver and gold).

18. Principles of qualitative analysis

  • Groups I to V (only Ag+, Hg2+, Cu2+, Pb2+, Bi3+, Fe3+, Cr3+, Al3+, Ca2+, Ba2+, Zn2+, Mn2+ and Mg2+).
  • Nitrate, halides (excluding fluoride), sulphate and sulphide.

 ORGANIC CHEMISTRY

19. Basic Concepts

  • Hybridisation of carbon; σ and π-bonds.
  • Shapes of simple organic molecules.
  • Structural and geometrical isomerism.
  • Optical isomerism of compounds containing up to two asymmetric centres, (R,S and E,Z nomenclature excluded).
  • IUPAC nomenclature of simple organic compounds (only hydrocarbons, mono-functional and bi-functional compounds).
  • Conformations of ethane and butane (Newman projections); Resonance and hyperconjugation.
  • Keto-enoltautomerism.
  • Determination of empirical and molecular formulae of simple compounds (only combustion method).
  • Hydrogen bonds: definition and their effects on physical properties of alcohols and carboxylic acids.
  • Inductive and resonance effects on acidity and basicity of organic acids and bases.
  • Polarity and inductive effects in alkyl halides.
  • Reactive intermediates produced during homolytic and heterolytic bond cleavage.
  • Formation, structure and stability of carbocations, carbanions and free radicals.

20. Preparation, properties and reactions of alkanes

  • Homologous series, physical properties of alkanes (melting points, boiling points and density).
  • Combustion and halogenation of alkanes.
  • Preparation of alkanes by Wurtz reaction and decarboxylation reactions.

21. Preparation, properties and reactions of alkenes and alkynes

  • Physical properties of alkenes and alkynes (boiling points, density and dipole moments).
  • Acidity of alkynes.
  • Acid catalysed hydration of alkenes and alkynes (excluding the stereochemistry of addition and elimination).
  • Reactions of alkenes with KMnO4 and ozone.
  • Reduction of alkenes and alkynes.
  • Preparation of alkenes and alkynes by elimination reactions.
  • Electrophilic addition reactions of alkenes with X2, HX, HOX and H2O (X=halogen).
  • Addition reactions of alkynes.
  • Metal acetylides.

22. Reactions of benzene

  • Structure and aromaticity.
  • Electrophilic substitution reactions: halogenation, nitration, sulphonation, Friedel-Crafts alkylation and acylation.
  • Effect of o-, m- and p-directing groups in monosubstituted benzenes.

23. Phenols

  • Acidity, electrophilic substitution reactions (halogenation, nitration and sulphonation).
  • Reimer-Tieman reaction, Kolbe reaction.

24. Characteristic reactions of the following (including those mentioned above)

  • Alkyl halides: rearrangement reactions of alkyl carbocation, Grignard reactions, nucleophilic substitution reactions.
  • Alcohols: esterification, dehydration and oxidation, reaction with sodium, phosphorus halides, ZnCl2/concentrated HCl, conversion of alcohols into aldehydes and ketones.
  • Ethers: Preparation by Williamson’s Synthesis.
  • Aldehydes and Ketones: oxidation, reduction, oxime and hydrazone formation, aldol condensation, Perkin reaction.
  • Cannizzaro reaction; haloform reaction and nucleophilic addition reactions (Grignard addition).
  • Carboxylic acids: formation of esters, acid chlorides and amides, ester hydrolysis.
  • Amines: basicity of substituted anilines and aliphatic amines, preparation from nitro compounds, reaction with nitrous acid, azo coupling reaction of diazonium salts of aromatic amines, Sandmeyer and related reactions of diazonium salts.
  • Carbylamines reaction.
  • Haloarenes: nucleophilic aromatic substitution in haloarenes and substituted haloarenes (excluding Benzyne mechanism and Cine substitution).

25. Carbohydrates

  • Classification; mono- and di-saccharides (glucose and sucrose).
  • Oxidation, reduction, glycoside formation and hydrolysis of sucrose.

26. Amino acids and peptides

  • General structure (only primary structure for peptides) and physical properties.

27. Properties and uses of some important polymers

  • Natural rubber, cellulose, nylon, teflon and PVC

28. Practical organic chemistry

  • Detection of elements (N, S, halogens).
  • Detection and identification of the following functional groups.
  • Hydroxyl (alcoholic and phenolic), carbonyl (aldehyde and ketone), carboxyl, amino and nitro.
  • Chemical methods of separation of monofunctional organic compounds from binary mixtures.

Hope you liked reading the above post. Please share it with your friends to help them in getting the relevant information. Stay tuned with eSaral.

Thanks!!

Leave a comment

Close

Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now