Limit – JEE Advanced Previous Year Questions with Solutions
JEE Advanced Previous Year Questions of Math with Solutions are available at eSaral. Practicing JEE Advanced Previous Year Papers Questions of mathematics will help the JEE aspirants in realizing the question pattern as well as help in analyzing weak & strong areas. eSaral helps the students in clearing and understanding each topic in a better way. eSaral also provides complete chapter-wise notes of Class 11th and 12th both for all subjects. Besides this, eSaral also offers NCERT Solutions, Previous year questions for JEE Main and Advance, Practice questions, Test Series for JEE Main, JEE Advanced and NEET, Important questions of Physics, Chemistry, Math, and Biology and many more. Download eSaral app for free study material and video tutorials.
Q. Let $\mathrm{L}=\lim _{x \rightarrow 0} \frac{\mathrm{a}-\sqrt{\mathrm{a}^{2}-\mathrm{x}^{2}}-\frac{\mathrm{x}^{2}}{4}}{\mathrm{x}^{4}}, \mathrm{a}>0 .$ If $\mathrm{L}$ is finite, then $:-$ (A) a = 2 (B) a = 1 (C) $\mathrm{L}=\frac{1}{64}$ (D) $\mathrm{L}=\frac{1}{32}$ [JEE 2009, 4]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (A,C) $\mathrm{a}-\mathrm{a}\left(1-\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}\right)^{\frac{1}{2}}-\frac{\mathrm{x}^{2}}{4} \quad \mathrm{a}-\mathrm{a}\left(1-\frac{\mathrm{x}^{2}}{2 \mathrm{a}^{2}}-\frac{1}{8} \frac{\mathrm{x}^{4}}{\mathrm{a}^{4}}\right)-\frac{\mathrm{x}^{2}}{4}$ $\mathrm{a}=2,\left(\mathrm{coefficient} \text { of } \mathrm{x}^{2}=0\right)$ $\therefore \mathrm{L}=\frac{1}{64}$

Q. If $\lim _{x \rightarrow 0}\left[1+x \ell n\left(1+b^{2}\right)\right]^{\frac{1}{x}}=2 b \sin ^{2} \theta, b>0$ and $\theta \in(-\pi, \pi],$ then the value of $\theta$ is- [JEE 2011, 3M, –1M]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (D)

Q. If $\lim _{x \rightarrow \infty}\left(\frac{x^{2}+x+1}{x+1}-a x-b\right)=4,$ then $-$ (A) a = 1, b = 4 (B) a = 1, b = –4] (C) a = 2, b = –3 (D) a = 2, b = 3 [JEE 2012, 3M, –1M]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (B)

Q. Let $\alpha(\mathrm{a})$ and $\beta(\mathrm{a})$ be the roots of the equation $(\sqrt[3]{1+a}-1) x^{2}+(\sqrt{1+a}-1) x+(\sqrt[6]{1+a}-1)=0$ where $a>-1 .$ Then $\lim _{a \rightarrow 0^{+}} \alpha(a)$ and $\lim _{a \rightarrow 0^{+}} \beta(a)$ are (A) $-\frac{5}{2}$ and 1 (B) $-\frac{1}{2}$ and $-1$ (C) $-\frac{7}{2}$ and 2 (D) $-\frac{9}{2}$ and 3 [JEE 2012, 3M, –1M]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (B)

Q. The largest value of the non-negative integer a for which $\lim _{x \rightarrow 1}\left\{\frac{-a x+\sin (x-1)+a}{x+\sin (x-1)-1}\right\}^{\frac{1-x}{1-\sqrt{x}}}=\frac{1}{4}$ is [JEE(Advanced)-2014, 3]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. 0

Q. Let $\alpha, \beta \in \mathrm{R}$ be such that $\lim _{x \rightarrow 0} \frac{x^{2} \sin (\beta x)}{\alpha x-\sin x}=1 .$ Then $6(\alpha+\beta)$ equals [JEE(Advanced)-2016]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. 7

Q. Let $\mathrm{f}(\mathrm{x})=\frac{1-\mathrm{x}(1+|1-\mathrm{x}|)}{|1-\mathrm{x}|} \cos \left(\frac{1}{1-\mathrm{x}}\right)$ for $\mathrm{x} \neq 1 .$ Then [JEE(Advanced)-2017]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (A,C)

Q. For any positive integer n, define $f_{\mathrm{n}}:(0, \infty) \rightarrow \square$ as $f_{\mathrm{n}}(\mathrm{x})=\sum_{\mathrm{j}=1}^{\mathrm{n}} \tan ^{-1}\left(\frac{1}{1+(\mathrm{x}+\mathrm{j})(\mathrm{x}+\mathrm{j}-1)}\right)$ for all $\mathrm{x} \in(0, \infty)$ (Here, the inverse trigonometric function $\tan ^{-1} \mathrm{x}$ assume values in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) .$ ) Then, which of the following statement(s) is (are) TRUE? (A) $\sum_{j=1}^{5} \tan ^{2}\left(f_{j}(0)\right)=55$ (B) $\sum_{j=1}^{10}\left(1+f_{j}^{\prime}(0)\right) \sec ^{2}\left(f_{j}(0)\right)=10$ (C) For any fixed positive integer $n, \lim _{x \rightarrow \infty} \tan \left(f_{\mathrm{n}}(x)\right)=\frac{1}{n}$ (D) For any fixed positive integer $n, \operatorname{limsec}_{x \rightarrow \infty} \operatorname{ec}^{2}\left(f_{\mathrm{n}}(x)\right)=1$ [JEE(Advanced)-2018]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (D)

Q. For each positive integer $n,$ let $y_{n}=\frac{1}{n}(n+1)(n+2) \ldots(n+n)^{1 / n}$ For $x \in \square,$ let $[x]$ be the greatest integer less than or equal to $x$. If $\lim _{n \rightarrow \infty} y_{n}=L,$ then the value of $[L]$ is [JEE(Advanced)-2018]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. 1

Administrator

Leave a comment

Please enter comment.
Please enter your name.


Comments
  • August 16, 2021 at 5:47 pm

    for last 4th question the best approach is to use expansions … it will make it very simple .

    1
  • February 11, 2021 at 7:24 pm

    Preferably….make some appropriation in the website and thank you for the questions despite of those problems.. keep it it up buddy

    1
  • October 22, 2020 at 9:52 pm

    In last problem if we apply sandwich rule that will be more easy

    26
  • August 16, 2020 at 10:13 pm

    For anyone having problems seeing the questions, right-click on the equation part, click “Show Math as”, then click “MathML code”. Copy all the text in the new window that opens with Ctrl+A. Now open a new tab and type in this URL: http://www.wiris.com/editor/demo/en/developers. And paste whatever you copied! Woila! Thank me later!

    4
    • November 30, 2020 at 12:02 pm

      You can use this site for seeing the equations cleary.

      6
  • August 10, 2020 at 1:51 pm

    questions are not clear

    21