Matrices – JEE Advanced Previous Year Questions with Solutions
JEE Advanced Previous Year Questions of Math with Solutions are available at eSaral. Practicing JEE Advanced Previous Year Papers Questions of mathematics will help the JEE aspirants in realizing the question pattern as well as help in analyzing weak & strong areas. eSaral helps the students in clearing and understanding each topic in a better way. eSaral also provides complete chapter-wise notes of Class 11th and 12th both for all subjects. Besides this, eSaral also offers NCERT Solutions, Previous year questions for JEE Main and Advance, Practice questions, Test Series for JEE Main, JEE Advanced and NEET, Important questions of Physics, Chemistry, Math, and Biology and many more. Download eSaral app for free study material and video tutorials.
Q. Let A be a 2 × 2 matrix Statement- $1: \operatorname{adj}(\operatorname{adj} A)=A$ Statement-2: $|$ adj $A|=| A |$ (1) Statement–1 is true, Statement–2 is false. (2) Statement–1 is false, Statement–2 is true. (3) Statement–1 is true, Statement–2 is true;Statement–2 is a correct explanation for Statement–1. (4) Statement–1 is true, Statement–2 is true; Statement–2 is not a correct explanation for statement–1. [AIEEE- 2009]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (4) Let $A=\left(\begin{array}{ll}{a} & {b} \\ {c} & {d}\end{array}\right)$ $\operatorname{adj}(\mathrm{A})=\left(\begin{array}{cc}{\mathrm{d}} & {-\mathrm{b}} \\ {-\mathrm{c}} & {\mathrm{a}}\end{array}\right)$ $\operatorname{adj}(\operatorname{adj} A)=\left(\begin{array}{ll}{a} & {b} \\ {c} & {d}\end{array}\right)=A$ statement is right Statement 2 We know $\mathrm{A}$ adj $(\mathrm{A})=|\mathrm{A}| \mathrm{I}_{\mathrm{n}}$ taking determinant $|\mathrm{A} \cdot \operatorname{adj}(\mathrm{A})|=\| \mathrm{A}\left|\mathrm{I}_{\mathrm{n}}\right|$ $\Rightarrow|\operatorname{adj}(\mathrm{A})|=|\mathrm{A}|^{\mathrm{n}-1}$ Here $\mathrm{n}=2$ (order) so $|\operatorname{adj} \mathrm{A}||\mathrm{A}|^{2-1}=|\mathrm{A}|$ so statement 2 is also true and 2 is not explanation for statement 1

Q. The number of 3× 3 non-singular matrices, with four entries as 1 and all other entries as 0, is :- (1) Less than 4            (2) 5             (3) 6              (4) At least 7 [AIEEE-2010]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (4)

Q. Let A be a $2 \times 2$ matrix with non-zero entries and let $\mathrm{A}^{2}=\mathrm{I},$ where I is $2 \times 2$ identity matrix. Define $\operatorname{Tr}(\mathrm{A})=$ sum of diagonal elements of $\mathrm{A}$ and $|\mathrm{A}|=$ determinant of matrix $\mathrm{A}$. Statement- $1: \operatorname{Tr}(\mathrm{A})=0$ Statement-2: $|\mathrm{A}|=1$ (1) Statement–1 is true, Statement–2 is true; Statement–2 is a correct explanation for Statement–1. (2) Statement–1 is true, Statement–2 is true; Statement–2 is not a correct explanation for statement–1. (3) Statement–1 is true, Statement–2 is false. (4) Statement–1 is false, Statement–2 is true. [AIEEE-2010]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (3) Statement 1: Let $\mathrm{A}=\left(\begin{array}{ll}{\mathrm{a}} & {\mathrm{b}} \\ {\mathrm{c}} & {\mathrm{d}}\end{array}\right) \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d},$ are non zero $A^{2}=\left(\begin{array}{ll}{a} & {b} \\ {c} & {d}\end{array}\right)\left(\begin{array}{ll}{a} & {b} \\ {c} & {d}\end{array}\right)=\left(\begin{array}{ll}{1} & {0} \\ {0} & {1}\end{array}\right)$ $\Rightarrow a^{2}+b c=1$ $\Rightarrow \mathrm{ab}+\mathrm{bd}=0 \Rightarrow \mathrm{b}(\mathrm{a}+\mathrm{d})=0$ so $\mathrm{b} \neq 0,(\mathrm{a}+\mathrm{d})=0$ $a+d=0 \Rightarrow \operatorname{tr}(A)=0$ Statement 2: $|A|=a d-b c=-a^{2}-b c=-\left(a^{2}+b c\right)=-1$ So Statement 2 is false.

Q. Let A and B be two symmetric matrices of order 3. Statement-1 : A(BA) and (AB)A are symmetric matrices. Statement-2 : AB is symmetric matrix if matrix multiplication of A with B is commutative. (1) Statement-1 is true, Statement-2 is false. (2) Statement-1 is false, Statement-2 is true (3) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1 (4) Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1. [AIEEE-2011]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (4) $A^{T}=A$ $\mathrm{B}^{\mathrm{T}}=\mathrm{B}$ Statement- 1 $(\mathrm{A}(\mathrm{BA}))^{\mathrm{T}}=(\mathrm{BA})^{\mathrm{T}} \mathrm{A}^{\mathrm{T}}$ $=\mathrm{A}^{\mathrm{T}} \mathrm{B}^{\mathrm{T}} \mathrm{A}^{\mathrm{T}}=\mathrm{A}(\mathrm{BA}) \rightarrow \text { symmetric }$ $((\mathrm{AB}) \mathrm{A}))^{\mathrm{T}}=\mathrm{A}^{\mathrm{T}} \mathrm{B}^{\mathrm{T}} \mathrm{A}^{\mathrm{T}}=(\mathrm{AB}) \mathrm{A} \rightarrow$ symmetric Statement – 1 is true Statement- 2: $(\mathrm{AB})^{\mathrm{T}}=\mathrm{B}^{\mathrm{T}} \mathrm{A}^{\mathrm{T}}=\mathrm{B} \mathrm{A}$ if $\mathrm{AB}=\mathrm{B} \mathrm{A}$ then $(\mathrm{AB})^{\mathrm{T}}=\mathrm{B} \mathrm{A}=\mathrm{AB}$ Statement- 2 is true but Not a correct expalnation.

Q. Statement-1 : Determinant of a skew-symmetric matrix of order 3 is zero. Statement-1 : For any matrix A, det(AT) = det(A) and det(–A) = –det(A). Where det(B) denotes the determinant of matrix B. Then : (1) Statement-1 is true and statement-2 is false (2) Both statements are true (3) Both statements are false (4) Statement-1 is false and statement-2 is true. [AIEEE-2011]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (1) Statement- 1: The value of determinant of skew symmetric matrix of odd order is always zero. So Statement-I. is true. Statement-II : This Statement is not always true depends on the order of matrix. $|-A|=-|A|$ if order is odd, so Statement–II is wrong. Statement-I is true and Statement-II is false.

Q. Let $\mathrm{A}=\left(\begin{array}{lll}{1} & {0} & {0} \\ {2} & {1} & {0} \\ {3} & {2} & {1}\end{array}\right) .$ If $\mathrm{u}_{1}$ and $\mathrm{u}_{2}$ are column matrices such that $\mathrm{Au}_{1}=\left(\begin{array}{l}{1} \\ {0} \\ {0}\end{array}\right)$ and $\mathrm{Au}_{2}=\left(\begin{array}{l}{0} \\ {1} \\ {0}\end{array}\right),$ then $\mathrm{u}_{1}+\mathrm{u}_{2}$ is equal to : [AIEEE-2012]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (1)

Q. If $P=\left[\begin{array}{lll}{1} & {\alpha} & {3} \\ {1} & {3} & {3} \\ {2} & {4} & {4}\end{array}\right]$ is the adjoint of a $3 \times 3$ matrix $A$ and $|A|=4,$ then $\alpha$ is equal to (1) 4                  (2) 11                      (3) 5                     (4) 0 [JEE(Main) – 2013]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (2) P = adj (A) taking determinant

Q. If $\mathrm{A}$ is an $3 \times 3 \times 3$ non-singular matrix such that $\mathrm{AA}^{\prime}=\mathrm{A}^{\prime} \mathrm{A}$ and $\mathrm{B}=\mathrm{A}^{-1} \mathrm{A}^{\prime},$ the BB’ equals : (1) I + B (2) I (3) $\mathrm{B}^{-1}$ (4) $\left(B^{-1}\right)^{\prime}$ [JEE(Main) – 2014]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (2)

Q. If $A=\left[\begin{array}{ccc}{1} & {2} & {2} \\ {2} & {1} & {-2} \\ {a} & {2} & {b}\end{array}\right]$ is a matrix satisfying the equation $A A^{T}=9$, where I is $3 \times 3$ identity matrix, then the ordered pair $(\mathrm{a}, \mathrm{b})$ is equal to : (1) (2, 1)               (2) (–2, –1)                (3) (2, –1)                (4) (–2, 1) [JEE(Main)-2015]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (2)

Q. If $\mathrm{A}=\left[\begin{array}{cc}{5 \mathrm{a}} & {-\mathrm{b}} \\ {3} & {2}\end{array}\right]$ and $\mathrm{A}$ adj $\mathrm{A}=\mathrm{A} \mathrm{A}^{\mathrm{T}},$ then $5 \mathrm{a}+\mathrm{b}$ is equal to : (1) 13                (2) –1                (3) 5                       (4) 4 [JEE(Main)-2016]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (3)

Q. If $A=\left[\begin{array}{cc}{2} & {-3} \\ {-4} & {1}\end{array}\right],$ then adj $\left(3 A^{2}+12 A\right)$ is equal to :- [JEE(Main)-2017]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (3)

Q. Let $\mathrm{A}=\left[\begin{array}{lll}{1} & {0} & {0} \\ {1} & {1} & {0} \\ {1} & {1} & {1}\end{array}\right]$ and $\mathrm{B}=\mathrm{A}^{20} .$ Then the sum of the elements of the first column of $\mathrm{B}$ is : (1) 211               (2) 251               (3) 231                 (4) 210 [JEE(Main)-2018]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (3)

Q. Let A be a matrix such that A. $\left[\begin{array}{ll}{1} & {2} \\ {0} & {3}\end{array}\right]$ is a scalar matrix and $|3 \mathrm{A}|=108 .$ Then $\mathrm{A}^{2}$ equals : [JEE(Main)-2018]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (1)

Q. Suppose $\mathrm{A}$ is any $3 \times 3$ non-singular matrix and $(\mathrm{A}-3 \mathrm{I})(\mathrm{A}-5 \mathrm{I})=0,$ where $\mathrm{I}=\mathrm{I}_{3}$ and $\mathrm{O}$ $=\mathrm{O}_{3} .$ If $\alpha \mathrm{A}+\beta \mathrm{A}^{-1}=4 \mathrm{I},$ then $\alpha+\beta$ is equal to : (1) 13                 (2) 7                  (3) 12                    (4) 8 [JEE(Main)-2018]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (4)

• September 10, 2021 at 7:24 pm

hiii

0
• September 10, 2021 at 7:23 pm

Terii maa ki chut E-saral, bhosdi ke ye jee main ke question hain na ki advanced, lund e-saral gandu

6
• September 8, 2021 at 10:53 am

ye sare milke humko pagal bana rahe hain madhachod ke bachhe…………..

2
• September 7, 2021 at 8:29 pm

Gajab chutiya banaya hai.

1
• May 14, 2021 at 10:27 am

12
• July 17, 2021 at 3:28 pm

yes bro

2
• March 16, 2021 at 11:54 am

Nice questions

10
• February 24, 2021 at 3:25 am

Fuck

25
• May 10, 2021 at 11:21 pm

.

9
• October 15, 2020 at 10:32 am

I need jee advance questions but hear is jee main quetuons

14
• September 21, 2020 at 7:47 am

Are bevkuf Insan JEE advanced ke question paper chahie Jee main kah de rakha hai yahan par.

102
• September 19, 2020 at 7:49 pm

Jee mains ke question de rekhe h aur jee advance ka tag lga rakh h. WoooooooW!

101
• September 15, 2020 at 7:34 pm

3
• September 15, 2020 at 7:32 pm

0
• September 12, 2020 at 8:07 pm

0
• September 7, 2020 at 7:07 pm

0
• August 5, 2020 at 12:05 pm

You have given most of the questions of jee mains .but title is jee advanced previous years questions.

0
• July 18, 2020 at 3:36 pm

this not jee advanced questions as mentioned by you

0
• July 14, 2020 at 11:03 am

you are doing a nice work keep it up. thank you

0
• May 17, 2020 at 8:53 pm