Method Of Differentiation – JEE Advanced Previous Year Questions with Solutions
JEE Advanced Previous Year Questions of Math with Solutions are available at eSaral. Practicing JEE Advanced Previous Year Papers Questions of mathematics will help the JEE aspirants in realizing the question pattern as well as help in analyzing weak & strong areas. eSaral helps the students in clearing and understanding each topic in a better way. eSaral also provides complete chapter-wise notes of Class 11th and 12th both for all subjects. Besides this, eSaral also offers NCERT Solutions, Previous year questions for JEE Main and Advance, Practice questions, Test Series for JEE Main, JEE Advanced and NEET, Important questions of Physics, Chemistry, Math, and Biology and many more. Download eSaral app for free study material and video tutorials.
Q. If the function $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}+\mathrm{e}^{\frac{\mathrm{x}}{2}}$ and $\mathrm{g}(\mathrm{x})=\mathrm{f}^{-1}(\mathrm{x}),$ then the value of $\mathrm{g}^{\prime}(1)$ is [JEE 2009, 4]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. 2 $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}+\mathrm{e}^{\mathrm{x} / 2}, \mathrm{g}(\mathrm{x})=\mathrm{f}^{-1}(\mathrm{x})$ $\Rightarrow \mathrm{g}^{\prime}(\mathrm{f}(\mathrm{x})) \cdot \mathrm{f}(\mathrm{x})=1$ $\operatorname{Put} \mathrm{f}(\mathrm{x})=1$ $\Rightarrow \mathrm{x}^{3}+\mathrm{e}^{\mathrm{x} / 2}=1$ $\Rightarrow \mathrm{x}=0$ $\Rightarrow \mathrm{g}^{\prime}(1) \cdot \mathrm{f}^{\prime}(0)=1,\left\{\mathrm{f}^{\prime}(\mathrm{x})=3 \mathrm{x}^{2}+\mathrm{e}^{\mathrm{x} / 2} \cdot \frac{1}{2}, \mathrm{f}^{\prime}(0)=\frac{1}{2}\right\}$ $\Rightarrow \mathrm{g}^{\prime}(1)=2$b

Q. Let $f(\theta)=\sin \left(\tan ^{-1}\left(\frac{\sin \theta}{\sqrt{\cos 2 \theta}}\right)\right),$ where $-\frac{\pi}{4}<\theta<\frac{\pi}{4} .$ Then the value of $\frac{\mathrm{d}}{\mathrm{d}(\tan \theta)}(f(\theta))$ is [JEE 2011, 4]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. 1 Let $f(\theta)=\sin \alpha$ where $\alpha=\tan ^{-1}\left(\frac{\sin \theta}{\sqrt{\cos 2 \theta}}\right)$ $\Rightarrow \quad \tan \alpha=\frac{\sin \theta}{\sqrt{\cos 2 \theta}}$ $\Rightarrow \quad \sin \alpha=\frac{\sin \theta}{\cos \theta}=\tan \theta \quad\left(\because \theta \in\left(-\frac{\pi}{4}, \frac{\pi}{4}\right)\right)$ $\Rightarrow \quad f(\theta)=\tan \theta$ $\Rightarrow \quad \frac{\mathrm{d}(f(\theta))}{\mathrm{d}(\tan \theta)}=1$

Q. The slope of the tangent to the curve $\left(y-x^{5}\right)^{2}=x\left(1+x^{2}\right)^{2}$ at the point $(1,3)$ is [JEE(Advanced)-2014, 3]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. 8 $\left(\mathrm{y}-\mathrm{x}^{5}\right)^{2}=\mathrm{x}\left(1+\mathrm{x}^{2}\right)^{2}$ $\Rightarrow 2\left(\mathrm{y}-\mathrm{x}^{5}\right)\left(\frac{\mathrm{dy}}{\mathrm{dx}}-5 \mathrm{x}^{4}\right)=\left(1+\mathrm{x}^{2}\right)^{2}+2 \mathrm{x}\left(1+\mathrm{x}^{2}\right) \cdot 2 \mathrm{x}$ Put $\mathrm{x}=1, \mathrm{y}=3$ $\frac{\mathrm{dy}}{\mathrm{dx}}=8$

Q. Let $f: R \rightarrow R, g: R \rightarrow R$ and $h: R \rightarrow R$ be differentiable functions such that $f(x)=x^{3}+3 x+2, g(f(x))=x$ and $h(g(g(x)))=x$ for all $x \in R .$ Then- (A) $\mathrm{g}^{\prime}(2)=\frac{1}{15}$ (B) h'(1) = 666 (C) h(0) = 16 (D) h(g(3)) = 36 [JEE(Advanced)-2016, 4(-2)]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (B,C) (A) $f^{\prime}(x)=3 x^{2}+3$ so, $g^{\prime}(2)=\frac{1}{f^{\prime}(0)}$ (Given $\left.g(x)=f^{-1}(x)\right)$ $\Rightarrow g^{\prime}(2)=\frac{1}{3}$ (B) $\operatorname{h}(\mathrm{g}(\mathrm{g}(\mathrm{x}))=\mathrm{x}$ $\mathrm{h}^{\prime}\left(\mathrm{g}(\mathrm{g}(\mathrm{x}))=\frac{1}{\mathrm{g}^{\prime}(\mathrm{g}(\mathrm{x})) \cdot \mathrm{g}^{\prime}(\mathrm{x})}\right.$ Now, $\mathrm{g}(\mathrm{g}(\mathrm{x}))=1$ $\mathrm{g}(\mathrm{x})=f(1)=6$ $\therefore \mathrm{x}=f(6)=236$ so h'(1) $=\frac{1}{\mathrm{g}^{\prime}(6) \cdot \mathrm{g}^{\prime}(236)}=\frac{1}{\frac{1}{6} \cdot \frac{1}{111}}$ $\Rightarrow \mathrm{h}^{\prime}(1)=666$ (C) $\mathrm{g}(\mathrm{g}(\mathrm{x}))=0$ $\therefore \mathrm{g}(\mathrm{x})=\mathrm{g}^{-1}(0)$ $\Rightarrow \mathrm{g}(\mathrm{x})=f(0)$ $\Rightarrow \mathrm{g}(\mathrm{x})=2$ $\Rightarrow \mathrm{x}=\mathrm{g}^{-1}(2)$ $\Rightarrow \mathrm{x}=f(2)$ $\Rightarrow \mathrm{x}=16 \mathrm{so} \mathrm{h}(0)=16$ (D) $\mathrm{g}(\mathrm{x})=3$ $\Rightarrow \quad \mathrm{x}=\mathrm{g}^{-1}(3)$ $\Rightarrow \quad \mathrm{x}=f(3)$ $\Rightarrow \mathrm{x}=38$ so $\mathrm{h}(\mathrm{g}(3))=38$

Administrator

Leave a comment

Please enter comment.
Please enter your name.


Comments
  • November 15, 2020 at 9:04 am

    Thank you very much.. it was very helpful for me..🙏🙏🙏🙏🙏🙏

    2
  • October 18, 2020 at 5:18 pm

    Thank you

    45
    • Gof
      May 30, 2021 at 3:49 pm

      To easyyyyyy qustions
      (For me(not for other people live in this world))

      6
  • September 21, 2020 at 5:52 am

    Thank you sir.

    1