**Question:**

A chord is at a distance of 8 cm from the centre of a circle of radius 17 cm. The length of the chord is

(a) 25 cm

(b) 12.5 cm

(c) 30 cm

(d) 9 cm

**Solution:**

(c) 30 cm

Let AB be the chord of the given circle with centre O and a radius of 17 cm.

From O, draw OM perpendicular to AB.

Then OM = 8 cm and OB = 17 cm

From the right ΔOMB, we have:

$\mathrm{OB}^{2}=\mathrm{OM}^{2}+\mathrm{MB}^{2}$

$\Rightarrow 17^{2}=8^{2}+\mathrm{MB}^{2}$

$\Rightarrow 289=64+\mathrm{MB}^{2}$

$\Rightarrow \mathrm{MB}^{2}=(289-64)=225$

$\Rightarrow \mathrm{MB}=\sqrt{225} \mathrm{~cm}=15 \mathrm{~cm}$

The perpendicular from the centre of a circle to a chord bisects the chord.

∴ AB = 2 × MB = (2 x 15) cm = 30 cm

Hence, the required length of the chord is 30 cm.

## Comments

Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.