A cylinder, a cone and a hemisphere are of equal base and have the same height. What is the ratio of their volumes?
Let the diameter of the base for all three be x cm and height be y cm.
For hemisphere radius $=\frac{x}{2} \mathrm{~cm}$
Height $=y=\frac{x}{2} \mathrm{~cm}$
(As height of the hemisphere is equal to the radius of hemisphere)
For cone
Radius $=\frac{x}{2} \mathrm{~cm}$
Height $=\frac{x}{2} \mathrm{~cm}$
(As height is same for all)
For cylinder
Radius $=\frac{x}{2} \mathrm{~cm}$
Height $=\frac{x}{2} \mathrm{~cm}$
The ratio of their volume is
= cylinder volume : conic volume : hemispherical volume
$=\pi\left(\frac{x}{2}\right)^{2} \frac{x}{2}: \frac{1}{3} \pi\left(\frac{x}{2}\right)^{2}\left(\frac{x}{2}\right): \frac{2}{3} \pi\left(\frac{x}{3}\right)^{3}$
$=1: \frac{1}{3}: \frac{2}{3}$
$=3: 1: 2$