Question:
A function $f(x)$ is given by $f(x)=\frac{5^{x}}{5^{x}+5}$, then the sum of the series $f\left(\frac{1}{20}\right)+f\left(\frac{2}{20}\right)+f\left(\frac{3}{20}\right)+\ldots \ldots+f\left(\frac{39}{20}\right)$ is equal to:
Correct Option: , 3
Solution:
$f(x)=\frac{5^{x}}{5^{x}+5} \ldots$ (i)
$f(2-x)=\frac{5^{2-x}}{5^{2-x}+5}$
$f(2-x)=\frac{5}{5^{x}+5} \ldots \ldots$
Adding equation (i) and(ii)
$f(x)+f(2-x)=1$
$f\left(\frac{1}{20}\right)+f\left(\frac{39}{20}\right)=1$
$f\left(\frac{2}{20}\right)+f\left(\frac{38}{20}\right)=1$
$f\left(\frac{19}{20}\right)+f\left(\frac{21}{20}\right)=1$
and $f\left(\frac{20}{20}\right)=f(1)=\frac{1}{2}$
$\Rightarrow 19+\frac{1}{2} \Rightarrow \frac{39}{2}$